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We show how the CO2 contribution to the Earth’s greenhouse effect can be estimated from

relatively simple physical considerations and readily available spectroscopic data. In particular, we

present a calculation of the “climate sensitivity” (that is, the increase in temperature caused by a

doubling of the concentration of CO2) in the absence of feedbacks. Our treatment highlights the

important role played by the frequency dependence of the CO2 absorption spectrum. For

pedagogical purposes, we provide two simple models to visualize different ways in which the

atmosphere might return infrared radiation back to the Earth. The more physically realistic model,

based on the Schwarzschild radiative transfer equations, uses as input an approximate form of the

atmosphere’s temperature profile, and thus includes implicitly the effect of heat transfer

mechanisms other than radiation. VC 2012 American Association of Physics Teachers.

[DOI: 10.1119/1.3681188]

I. INTRODUCTION

The study of the “greenhouse effect” due to the CO2 in the
Earth’s atmosphere has a long and interesting history.1

Although uncertainty remains regarding the long-term effects
on the Earth’s temperature of various feedback mechanisms
that would be expected to accompany an increase in atmos-
pheric CO2, the basic physics of the CO2-induced warming in
the absence of such feedbacks is (or should be) uncontrover-
sial. Nonetheless, we feel there is a lack of a simple presenta-
tion of this effect at a sufficiently detailed, technical level to
make it possible for an interested, but non-specialist physicist,
or physics student, to get a quick feel for the numbers
involved.

The purpose of this paper is to offer such a presentation.
Our goal is to provide a self-contained treatment that is more
mathematical than the recent, very good introductory article
in Physics Today by Pierrehumbert,2 while still remaining at
a much simpler level than the same author’s recent textbook3

(which is intended to prepare students to do original research
in climate science).4 Our model is also somewhat more
advanced than the one presented in Sec. 8.5 of the recent
textbook by Andrews,5 which, however, is a very good intro-
duction to many related topics that we will only mention in
passing here. We should also mention the relatively recent
article in this same journal by Tomizuka,6 which has a num-
ber of points in common with ours; however, its numerical
approach does not lend itself well to the derivation of ap-
proximate analytical expressions (in particular, for the
“climate sensitivity”) such as the ones we will present here.
Nonetheless, it is a useful reference for the effect of other
greenhouse gases not covered here.

Since we are not, ourselves, atmospheric physicists, our
chosen approach may be a little unconventional from the
point of view of this discipline, but we believe it should feel
natural to a physicist approaching the problem “from
scratch,” with only a basic understanding of thermodynamics
and atomic and molecular spectroscopy. Accordingly, we
have tried to introduce only a minimum of technical, special-
ized concepts,7 and, in the time-honored physics tradition of
back-of-the-envelope calculations, we have kept our models
as simple as possible. Nonetheless, our final estimates for a

couple of important quantities—namely, the radiative forc-
ing equivalent of CO2, and the “climate sensitivity” to a dou-
bling of the CO2 concentration—turn out not to be very far
from their accepted values. We believe, therefore, that our
treatment may help demystify the subject somewhat, and
hence be valuable to interested physicists and physics stu-
dents, some of whom may be confronted with questions
about CO2-induced global warming and would like to have a
calculation, of, at least, the foundation of the effect, in a rela-
tively compact form that they can follow and check for
themselves.

We begin (in Sec. II) by presenting a brief explanation of
the greenhouse effect for an idealized Earth with a uniform
surface temperature. Greenhouse warming is then related to
the fraction x of the radiation emitted by the surface of the
Earth that is prevented from escaping out to space by the
“greenhouse gases.” The remainder of the paper is devoted
to calculating the contribution of atmospheric CO2 to this
fraction. This requires us, first, to consider the absorption
spectrum of CO2, for which we introduce a somewhat crude
approximation in Sec. III (based on freely available spectro-
scopic data), and then, to develop a model for what happens
to the absorbed photon’s energy in the atmosphere. Two
such models are presented: in the first one (Sec. IV), the his-
tory of an individual photon is treated as a random walk,
consisting of absorption and reemission events by molecules
in a hypothetical “static” atmosphere. This model neglects
convection as well as any other form of energy redistribution
or transfer and hence overestimates the actual greenhouse
warming; otherwise put, it provides us with an upper limit
for the warming potential of atmospheric CO2 alone.

Our second model (Sec. V), while still highly simplified,
involves the radiative transfer equation in a one-dimensional,
temperature-stratified atmosphere, which could be written
down immediately after reading Pierrehumbert’s Physics
Today article.2 This is sometimes referred to as Schwarzs-
child’s equation, since it is closely related to one introduced by
Schwarzschild in 1906 to describe the Sun’s atmosphere.8 We
derive approximate analytical solutions to this equation, using
as input a standard approximation to the temperature profile of
the Earth’s atmosphere, and, as mentioned above, we find
results in fairly good agreement with currently accepted
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values. We also point out, by a conservation-of-energy argu-
ment, that this model implicitly includes non-radiative cooling
of the surface of the Earth by the atmosphere.

Finally, in Sec. VI, we compare the analytical results of
Sec. V to the result of a numerical integration over absorp-
tion lines using the MODTRAN package, for which a Web-
based interface is also freely available.9 Again, the agree-
ment, for the appropriate choice of parameters, is reasonably
good. This may have the positive effect of making the
MODTRAN calculator appear less like a black box, increasing
the user’s confidence in its results for other parameter set-
tings, which can be used to explore situations well beyond
what we consider here.

II. THE GREENHOUSE EFFECT

The basic physics behind the Earth’s greenhouse effect can
be understood as follows.10 The Earth receives, on average,
I0 ¼ 1361 W/m2 of power from the sun, which it absorbs as a
disk with area pR2

e . Assuming that it radiates as a spherical
blackbody with a surface 4pR2

e , its steady state temperature T0

would be determined by the Stefan-Boltzmann law as

rSBT4
0 � 4pR2

e ¼ ð1� aÞI0 � pR2
e ; (1)

where rSB ¼ 5:67� 10�8 W/m2 K4 is the Stefan-Boltzmann
constant, and a is the albedo of the Earth, that is, the fraction
of solar intensity that is directly reflected out to space with-
out absorption. With a ¼ 0:3, one obtains T0 ¼ 255 K.

Of course, the surface of the Earth is not at a uniform tem-
perature; in addition to the difference between the day and
night sides, there are important variations with latitude and
topography. Nonetheless, the notion of an average tempera-
ture is a useful one, and observations from space are consist-
ent with a blackbody radiation spectrum, only with “gaps”
corresponding to absorption by greenhouse gases (see, for
instance, Fig. 3 of Pierrehumbert’s article2). An analysis of
some of the issues associated with defining an average sur-
face temperature for a rotating planet with thermal inertia
has been presented in Ref. 11.

In any case, observations indicate that the average temper-
ature of the Earth’s surface is actually rather higher than the
value of T0 calculated from Eq. (1), closer, in fact, to 288 K.
The “greenhouse effect” explanation, in its simplest form, is
as follows. The Earth’s atmosphere contains a number of
gases—of which the most important, at their present concen-
trations, are water vapor and carbon dioxide—that let
through most of the sun’s radiation, but absorb strongly
some of the infrared radiation emitted by the surface.

Let T be the actual average surface temperature. The rate,
or intensity, of radiation (in, say, W/m2) is then rSBT4.
Assume that the net effect of the atmosphere is to reduce the
total intensity that eventually makes it out to space by a frac-
tion x of this quantity. The radiative equilibrium equation
then becomes, instead of Eq. (1),

ð1� xÞrSBT4 ¼ 1� a
4

I0; (2)

from which a new (higher) equilibrium temperature T results.
Combining Eqs. (1) and (2), we see that

T ¼ T0

ð1� xÞ1=4
: (3)

If T ¼ 288 and T0 ¼ 255 K, we see that we must have
x ’ 0:39.

The reason for writing Eqs. (2) and (3) in terms of frac-
tions, rather than absolute intensities, is that physically one
expects the actual power absorbed, or “blocked,” to be (at
least as a first approximation) proportional to the power
emitted, which depends strongly on the temperature; whereas
one expects the ratio x of power absorbed to emitted to
depend on the temperature only weakly, or indirectly,
through other variables such as the concentrations of the
greenhouse gases, or the temperature lapse rate. The depend-
ence of such variables on temperature is in fact an example
of the “feedbacks” that we shall ignore here.

Several additional remarks may be in order. First, even
though many heat transfer processes may be going on inside
the atmosphere, and between the surface and the atmosphere,
the ultimate mechanism by which the Earth releases energy
to space is radiation, and so Eq. (2) does not leave anything
out, in principle, as long as x is calculated correctly. Second,
it is possible to move the term xrSBT4 � DI (the “blocked”
intensity) in Eq. (2) to the right-hand side, where it takes a
positive sign, and hence looks as an effective increase in the
intensity of incoming solar radiation; it is for this reason that
the infrared-radiation blocking effect of greenhouse gases is
often described as an equivalent increase in “radiative for-
cing.” Last, note that, in fact, the “blocking” must physically
involve radiation from the atmosphere to the surface, since
(in steady state) the “blocked” radiation must ultimately
return to the surface: the whole point being that, as a conse-
quence of the blocking, the surface is incapable of cooling
off as fast as a freely radiating blackbody at temperature T
naturally would. In dynamic terms, one may think of this
“back-radiation” as “initially” leading to an increase in the
average temperature of the Earth, and with it its radiation
rate, until, as expressed by Eq. (2), an equilibrium tempera-
ture T is reached at which the net energy loss to space
matches the energy input from the sun. Physical models for
how the “blocked” radiation might be returned to the surface
are presented in Secs. IV and V.

Our concern will be with estimating the fraction of the
power that is blocked by atmospheric CO2, which we may
denote by xCO2

. As mentioned above, there are other green-
house gases in the atmosphere, and therefore, in general, we
will have x ¼ x0 þ xCO2

. Let T ’ 288 K be the observed tem-
perature in the presence of all the greenhouse gases, and let T0

be the temperature one would have in the absence of CO2;
that is, we have ð1� xÞT4 ¼ ð1� x0 � xCO2

ÞT4

¼ ð1� x0ÞT04 ¼ T4
0 . Eliminating 1� x0 we obtain T0 as

T0 ¼ T

1þ T

T0

� �4

xCO2

 !1=4
’ 288

1þ 1:63xCO2
ð Þ1=4

K: (4)

We can use this equation to estimate the overall contribution
of CO2 to the current temperature of the Earth; that is, the dif-
ference T � T0. The basic assumption made in doing so is that
x0 does not change; that is, we are comparing the current situa-
tion to a hypothetical one in which there is no CO2 in the
atmosphere, but all the other greenhouse gases are still present
in such a concentration that they still block the same fraction
of the outgoing radiation as they do now. This is clearly unre-
alistic, for several reasons: first, because the absorption bands
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of water vapor and CO2 overlap in part, complete removal of
CO2 would result in more absorption by water vapor, at the
same concentration; neglecting this overlap is therefore one of
the important simplifying assumptions of our model. On the
other hand, as Pierrehumbert2 notes, a colder Earth would
hold less water vapor in the atmosphere, which would tend to
reduce the water vapor greenhouse effect in the absence of
CO2. Neglecting this latter effect, however, is consistent with
our stated purpose to ignore “feedbacks” in order to keep the
problem manageable.12

Always with the above caveat, we can also use Eq. (3) to
estimate the change in T arising from a small enough change
in the concentration of CO2, and hence, in xCO2

, all other
things being equal

dT ¼ 1

4

T0

ð1� xÞ5=4
dxCO2

¼ 1

4

T5

T4
0

dxCO2
’ 117dxCO2

K: (5)

Since Eq. (5) involves a first-order expansion about cur-
rent conditions, the reference radiation rate for the calcula-
tion of both x and dxCO2

is the radiation rate rSBT4 at the
current temperature; that is, dxCO2

¼ dðDIÞ=rSBT4, where
dðDIÞ is the change in the blocked intensity resulting from a
change in the CO2 concentration n. This quantity, the CO2

“radiative forcing equivalent,” is currently estimated13 as
5:35 lnðn=n0Þ W/m2, or 3:71 W/m2 for a doubling of n.
When put together with rSBT4 ¼ 390 W/m2, the latter
figure gives dxco2

¼ 9:51� 10�3, and hence, by Eq. (5),
dT ¼ 1:1 K per doubling, an often-quoted figure for the CO2

“climate sensitivity” in the absence of feedbacks. In Sec. V,
we show how the correct order of magnitude for this quan-
tity can be estimated from a simplified treatment of the CO2

absorption spectrum (developed in Sec. III) and the radiative
transfer equations.

III. THE CO2 ABSORPTION SPECTRUM

As a triatomic molecule, CO2 has many strong (dipole-
allowed) transitions in the infrared, since both the bending
and stretching modes of vibration readily generate dipole
moments (see, for instance, the discussion in Sec. 4.4.2 of
Ref. 3). Of particular interest for the Earth’s greenhouse
effect are the set of transitions near 667 cm�1 (15 lm), which
is close to the peak of the Planck radiation curve for a 288 K
blackbody. Rotational states and isotopic shifts result in liter-
ally thousands of separate lines in the region between 550
and 800 cm�1. Spectral properties for all these lines are
available in the HITRAN database;14 a convenient online
interface to this database may be found at SpectralCalc.-
com.15 In what follows we indicate how these data can be
used to obtain useful approximations to the very complicated
absorption spectrum.

In the HITRAN database, each line is assigned an
“intensity” Si [in units of cm�1/(molecule� cm�2)]. At nor-
mal atmospheric pressure, all of the lines may be assumed to
be pressure broadened; the half-width at half maximum, ci,
is also listed for each transition. If �i is the central frequency
for each transition (ignoring pressure shifts), the total absorp-
tion cross-section at any given frequency could be expressed
as

rð�Þ ¼
X

i

Si

p
ci

c2
i þ ð� � �iÞ2

; (6)

where the sum runs over all transitions [see the Appendix to
the article on the 1996 Edition of HITRAN (Ref. 16) for
details, especially Eqs. (A14) and (A15)].

In practice, however, it is found that the very far wings of
these transitions exhibit a decay faster than the pure Lorent-
zian form assumed in Eq. (6). According to problem 4.17 of
Ref. 3, there are various empirical far-tail line shapes in use,
but a simple approach is to just truncate the tail at a fixed
number of line widths (for reference, a typical value for ci is
about 0:07 cm�1). Such a truncation, at j� � �ij > 100ci, has
been used to produce the spectrum shown in the rapidly
varying dotted curve in Fig. 1 (the choice of 100ci was sug-
gested in the same reference quoted above). Without it, the
center of the band would look very much the same, but at the
edges, above � ¼ 750 cm�1 and below � ¼ 600 cm�1, the
spectrum would actually be dominated by the far tail of the
central line; that is, it would not fall off quite as fast as
shown in the figure. This could make our estimates of the pa-
rameters r6 below [see Eq. (8)] smaller by 7% or more,
depending on how much of the spectrum we chose to include
in our fits.

The dotted curve in Fig. 1 has been plotted at a resolution
of 0:1 cm�1. Since this kind of resolution is often impractical,
many calculations make use of “band models” (see, for
instance, Kiehl and Ramanathan17) where an effective band
strength is defined over suitable coarse-graining intervals. The
dashed line in Fig. 1 shows the result of a simple average of
the spectrum over frequency intervals of width D� ¼ 5 cm�1

(for reference, each such interval may contain of the order of
500 partly overlapping lines). We have chosen D� ¼ 5 cm�1

because this is also what is used in Fig. 1 of the paper by
Kiehl and Ramanathan,17 and our result has obvious similar-
ities with that figure, but we emphasize that our simple aver-
age is definitely not the way the “professionals” compute an
effective band strength for practical calculations; indeed,
many factors that we will ignore here need to be taken into
consideration for such calculations—most importantly the de-
pendence of the spectrum on pressure (for an introduction to
all these complications, see Sec. 4.4 of Ref. 3).

Note that if Eq. (6) is averaged over a frequency interval
of width D� � ci around some central frequency, and the
effect of the Lorentzian tails outside of this interval is
neglected, one could, with little error, just replace the inte-
gral of all the Lorentzian functions by p, and restrict the sum

Fig. 1. Absorption cross-section, in cm2, for a CO2 molecule as a function

of frequency around 15 lm wavelength (light gray dotted curve); note the

logarithmic scale. Also shown are a “coarse grained” spectrum (medium

gray dashed curve) obtained by averaging over intervals of width 5 cm�1,

and a drastically simplified version (black, solid line) that we use for the an-

alytical order-of-magnitude estimates.
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to only the lines centered within the interval; if these are
more or less uniformly distributed, then only a small fraction
(of the order of ci=D�) of them is close enough to the edges
to introduce an appreciable error. Hence, a much simpler
form for the “coarse-grained” spectrum shown in Fig. 1 is
just

rð�kÞ ¼
1

D�

X
j�i��k j�D�=2

Si: (7)

That is to say, simply assign to each “coarse-grained inter-
val” the average strength of all the lines that it contains. For
our choice of D� ¼ 5 cm�1, the result of this prescription is
virtually indistinguishable from the dashed line in Fig. 1.

Since the main goal of this paper is to derive relatively
simple analytical approximations that make it easy to grasp
the basic physics, rather than strive for high numerical accu-
racy, we will, for all the calculations that follow, simplify
the absorption spectrum even further, by replacing it with the
triangular (in a logarithmic plot) function shown as a solid
line in Fig. 1. This is the result of a least-squares fit to
the coarse-grained data, in the interval 550 cm�1< �
< 790 cm�1, and is given by

rð�Þ ¼ r0 exp �r6j� � �0j½ � (8)

with �0 ¼ 667:5 cm�1, and different slopes rþ and r� depend-
ing on whether � > �0 or � < �0, respectively. The parame-
ters from the fit are r0 ¼ 3:71� 10�23 m2, r� ¼ 0:092 cm,
and rþ ¼ 0:086 cm. The importance of the slopes r6, which
characterize the approximately exponential decrease in the
absorption power of the CO2 molecules away from resonance,
will become apparent in the next couple of sections. As for
r0, we can take it as an estimate of the typical absorption
cross-section seen by an infrared photon of frequency close to
the center of the absorption band, say between 650 and
690 cm�1, and start to explore its implications. Suppose this
photon has been emitted upwards at the surface of the Earth.
How high in the atmosphere will it travel before it is
absorbed?

Consider a column of air of height l and cross-sectional
area A. If n0 is the number density of CO2 molecules near
the surface of the Earth, the number of molecules in the col-
umn is n0Al. If each molecule appears to the photon as an
absorbing disk of area r0, and they are randomly spread hori-
zontally, then on average it takes A/r0 molecules of CO2 to
block the photon’s upward path completely (the other gases
in the atmosphere are virtually transparent at these frequen-
cies). Setting these two numbers equal, we get the photon’s
“mean free path”18 l ¼ 1/n0r0. At the current CO2 concen-
tration of about 390 ppm (parts per million), we have near
the surface of the Earth (T � 288 K, pressure � 1 atm)
n0 ’ 9:91� 1021 molecules/m3. Putting this together with
r0 ¼ 3:7� 10�23 m2, we get l ¼ 2:7 m. Hence, the photon
does not get very far at all. CO2 may be transparent to visible
light, and its concentration measured in parts per million, but
as far as a 15 lm photon traveling upwards is concerned, the
bottom of the atmosphere might as well be an impenetrable
wall of CO2.

Clearly, the situation is different for radiation at frequen-
cies towards the edges of the band (say, below 580 or above
760 cm�1), where r has fallen off by several orders of

magnitude; especially since, once the photon makes it to a
substantial height, the density of CO2 goes down as well. It
is radiation at these frequencies that is most sensitive to
changes in the atmospheric CO2 concentration. We may get
an idea of what happens from the following simplified
model, which does not really describe the atmosphere of the
Earth, but allows us to put an upper bound to the green-
house potential of CO2 alone.

IV. FIRST MODEL: A STATIC ATMOSPHERE

WITHOUT MOLECULAR COLLISIONS

Suppose that each photon emitted upwards by the Earth
performs the following one-dimensional “random walk.” Af-
ter traveling a distance l ¼ 1=rn (where n is the local CO2

density) it is absorbed, after which it is reemitted, with a
50–50 probability of being sent upwards in the atmosphere
or downwards, back to the Earth. If it goes upwards, then we
assume that after traveling another distance l it is absorbed
again, and so on. The question is, what is the probability that
it will eventually get back to the Earth, or, alternatively,
eventually escape into space?

This is actually a well-known problem in probability
theory, known as a “classical ruin problem.”19 If we start
keeping track of the photon after the first absorption event,
when it is a distance l above the Earth, the ultimate “ruin
probability,” that is, the probability that it will ultimately
return to the Earth rather than escape out to space is

Preturn ¼ 1� 1

N
; (9)

where N is the total number of steps needed to escape to
space. (The proof of this result is not difficult, but we skip it
here for brevity; it can be found in Ref. 19.)

Perhaps surprisingly, the number N turns out to be finite,
if one assumes that the density of the atmosphere decreases
exponentially20 with the height z, since in that case the
attenuation length increases, also exponentially

lðzÞ ¼ 1

rnðzÞ ’
1

rn0

ez=L: (10)

A simple hydrostatic-equilibrium treatment of the
“exponential atmosphere” (such as the one found in Ref. 20)
yields nðzÞ ¼ n0e�z=L, with a “scale height” L ¼ kT=mg,
where m is the molecular mass. For air, with m � 29 u, one
gets, at a temperature of T ¼ 273 K, a value of L of the order
of 8000 m. Although CO2 is heavier than air, it turns out to
be very well-mixed, by fluid motions, throughout the atmos-
phere, and hence, its density may be taken to decay with the
same characteristic constant as air itself. In reality, of course,
the exponential decay is only a first approximation, based on
an isothermal atmosphere, but we shall adopt it, for simplic-
ity, for the remainder of this paper.21

Let zj be the height of the jth “absorption layer” in our
model. We have therefore

zjþ1 ¼ zj þ lðzjÞ ¼ zj þ
1

rn0

ezj=L: (11)

This can be approximated by the differential equation
rn0e�z=Ldz ¼ dj, which is easily integrated to show that, as
z!1, j approaches the value
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N ¼ rn0L: (12)

We can use this in Eq. (9) to conclude that

Preturn ’ 1� 1

rð�Þn0L
; (13)

where the dependence of r on � has been explicitly indicated.
With r0 ¼ 3:7� 10�23 m2, n0 ¼ 9:91� 1021 molecules/m3,
and L ¼ 8000 m, one gets Preturn ¼ 1� 2:7=8000 ¼ 0:9997,
so a photon with frequency near the center of the band is vir-
tually certain to return to Earth.

Note that under the blackbody radiation assumption, the
rate of photon emission depends only on the Earth’s surface
temperature, not (directly) on whether the photon eventually
returns or not; hence, once the photon returns, its story is
effectively over. Put otherwise, one could directly multiply
the Earth’s emitted photon flux by 1� Preturn to get the flux
out to space in this model.

The power radiated per unit area and per unit frequency
by the surface of a blackbody at temperature T is given by
Planck’s radiation formula

Bð�; TÞ ¼ 2ph�3

c2

1

eh�=kT � 1
; (14)

where a factor of p has been included to account for an inte-
gral over solid angle. When this is multiplied by 1� Preturn

(with the understanding that Preturn is to be set to zero when
the right-hand side of the expression (13) is negative), one
obtains, for T ¼ 288 K, an outgoing radiation spectrum as
illustrated in Fig. 2, using the “triangular” approximation (8)
for rð�Þ.

Numerical integration of this spectrum gives the total radi-
ation going out to space as approximately 324 W/m2, which
is 66 W/m2, or 17%, smaller than the total intensity emitted
by a 288 K blackbody (390 W/m2). Using xCO2

¼ 0:17 in Eq.
(4) yields T0 ¼ 271 K as the temperature of a hypothetical
Earth without any CO2, under the present model, which
would make CO2 responsible for about 17 K of the total
greenhouse effect. This is rather larger than the accepted val-
ues (see Sec. V for a discussion); more importantly, the
actual measured spectrum of radiation coming out of the
Earth differs from Fig. 2 in important ways, which indicate
that the simple model we have been using so far is missing
some crucial physics.

Nevertheless, this model has a number of attractive features.
It provides a simple picture to illustrate how absorption, fol-
lowed by reemission, does result in a net flux of photons back
to Earth, at those frequencies where the atmosphere is optically
thick, that is, where Nð�Þ is large. (Perhaps surprisingly, the
existence of this “downwelling radiation” has actually been
questioned by some.) It also allows one to get a first glimpse
of the effect of increasing the concentration of CO2.

Consider, for instance, a photon that, at the present CO2

concentration, has Preturn ¼ 1=2 in Eq. (13). (According to the
simplified spectrum (8), this happens around � ¼ 588 and 752
cm�1.) If one doubles n0, Preturn becomes 3=4, that is, the
probability of the photon coming back to Earth increases by
50%, and the flux out to space at that frequency is cut in half.
Clearly, this effect is important only around the wings of the
CO2 absorption spectrum: graphically, doubling the CO2 con-
centration widens the range of frequencies blocked in Fig. 2

(the “hole” in the blackbody emission curve), as the inset
shows (compare Fig. 4.12, top, of Ref. 3, and the description
of the greenhouse gas “ditch” in Sec. 4.4.1 of the same text).

It is easy to see by direct numerical integration that the
model in this section predicts a decrease in the total power
radiated out to space (area under the curve in Fig. 2) of about
6.3 W/m2 when n0 is doubled from 390 to 780 ppm. Again
this is too high; in the notation of Sec. II, this gives
dxCO2

¼ 6:3=390 ¼ 0:016, which when used in Eq. (5) gives
a climate sensitivity of about 1:9 K per doubling. The more
sophisticated model in Sec. V will show how and why this
estimate has to be revised downwards, but for now the present
model shows that in the absence of processes other than the
ones discussed so far, the absorptive strength of CO2 would
be sufficient to cause, by itself, an increase in temperature of
the order of 2 K, if doubled from the present concentration.

V. A MORE REALISTIC MODEL: TEMPERATURE-

STRATIFIED ATMOSPHERE IN LOCAL

THERMODYNAMIC EQUILIBRIUM

The model presented in the previous section basically
neglected the possibility of any real exchange of energy
between the Earth and the atmosphere. Although formally
described as absorption, the imagined scenario for a photon
traveling in the atmosphere was really only a succession of
elastic scattering events. (In fact, the entire “atmosphere” in
that model could equivalently be replaced by a nonabsorbing
mirror with a frequency-dependent transmission coefficient.)

In the real atmosphere, on the other hand, the collision
time for a CO2 molecule with an air molecule is typically
shorter than the radiative transition’s lifetime, which means
that most of the time the photon is not reemitted immediately
after it is absorbed; rather, its energy is quickly spread out
among the surrounding air molecules. Of course, at a finite
temperature, the reverse process is also possible: collisions
with air molecules may excite the CO2 molecules and cause
them to radiate. In fact, in steady state, under the assumption
of local thermodynamic equilibrium, both processes must be
going on all the time, at equal rates.

The above points are made, and elaborated at some length,
in the recent article by Pierrehumbert,2 who discusses a model
of layers for the atmosphere, in which each layer (at a given
height and temperature) absorbs with a coefficient that depends

Fig. 2. The transmitted intensity through the atmosphere as a function of

frequency, as given by ð1� PreturnÞBð�; TÞ, for T ¼ 288 K, using the trian-

gular approximation (8) to the CO2 absorption spectrum in Eq. (13). Inset:

detail of the region between 550 and 800 cm�1 for the current CO2 concen-

tration of 390 ppm (black curve) and for double the concentration, or

780 ppm (gray curve).
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on the frequency, and radiates (both upwards and downwards)
at a rate determined by its temperature and its absorptivity. For
radiation of intensity IðþÞ traveling upwards,22 this model leads
to the following differential equation:

dIðþÞ�

dz
¼ �a� IðþÞ� � Bð�; TðzÞÞ

� �
: (15)

Here, a� is the reciprocal of the absorption length l at this
frequency, which, as in Sec. IV, can be written as
a� ¼ nðzÞrð�Þ ¼ n0e�z=Lrð�Þ. The fact that the same coeffi-
cient a� appears in the emission and absorption terms is an
expression of Kirchhoff’s law,23 as is the presence of the
blackbody radiation function Bð�; TÞ. Equation (15), in vari-
ous forms, is often referred to as Schwarzschild’s equation,8

or as the radiative transfer equation.
An important conceptual difference between this model and

the one in Sec. IV is that now there is no direct connection
between a photon absorbed and a photon radiated: a CO2 mol-
ecule in the atmosphere radiates simply because it is warm, not
necessarily because it has just absorbed a photon. Absorption
of radiation does contribute to keep the atmosphere at a given
height at a given temperature [in fact, it balances the radiative
losses, as expressed in Eq. (15)], but by itself it is not enough
to establish the actual temperature profile observed on Earth,
as we will show later in this section. Nonetheless, many of the
insights of Sec. IV do carry over to this new situation: an
upwards-traveling photon that encounters many absorption
layers will be unlikely to ever escape out to space, whereas a
downward-traveling photon, of the same frequency, but emit-
ted from close to the bottom of the atmosphere, will have a
good chance of reaching the Earth’s surface. Kirchhoff’s law
establishes that an object in thermal equilibrium will radiate
most strongly at those frequencies where it absorbs most
strongly; in the range of frequencies where absorption is very
strong, therefore, the bottom of the atmosphere is like a black-
body at close to the same temperature as the surface of the
Earth, radiating down to it a spectrum that is virtually identical
to the one it absorbs, and hence acting (at those frequencies)
essentially like a mirror, just as in Sec. IV.

To see what happens at other frequencies, and at other
heights, we can formally integrate Eq. (15) as follows. As in
Eq. (12), let Nð�Þ ¼ n0rð�ÞL (the number of “absorption
layers” we found in our earlier treatment; it may also be
regarded as a sort of average “optical density of the atmos-
phere” at the frequency �). Then, define the new independent
variable n as24

n ¼ 1

Nð�Þ

ðz

0

a�ðz0Þdz0 ¼ 1� e�z=L
� �

: (16)

We have n ¼ 0 at z ¼ 0, and n ¼ 1 as z!1.
Then, d=dz ¼ ðdn=dzÞd=dn ¼ ða�=Nð�ÞÞd=dn, so Eq. (15)

becomes

dIðþÞ�

dn
¼ �Nð�ÞIðþÞ� þ Nð�ÞBð�; TðnÞÞ: (17)

The formal solution of (17) is

IðþÞ� ðnÞ ¼ IðþÞ� ð0Þe�Nð�Þn þ Nð�Þ
ðn

0

e�Nð�Þðn�n0Þ

� Bð�;Tðn0ÞÞdn0; (18)

where IðþÞ� ð0Þ is the upwards radiation rate at the surface of the
Earth, which, as before, we can take to be equal to Bð�; Tð0ÞÞ
with Tð0Þ ¼ 288 K, the average surface temperature. An im-
portant approximation is that we have assumed the absorption
spectrum, and hence Nð�Þ, to be independent of height.25 This
is not exactly correct, since the broadening and the strength of
the spectral lines depends on both pressure and temperature.16

Still, for calculations based on the very rough approximation
(8), this is not a significant additional shortcoming.

We are interested in estimating how much of the power
emitted by the Earth’s surface, IðþÞ� ð0Þ, makes it out to space.
The first term in Eq. (18) tells us that at the frequencies
where Nð�Þ is large, this flux is quickly absorbed as n
increases. As this happens, it is replaced by radiation from
other atmospheric layers, at other temperatures: this is given
by the second term in Eq. (18).

In order to proceed, we need to specify how the average
equilibrium temperature changes with height. We shall take
as guide the International Civil Aviation Organization
(ICAO) “international standard atmosphere” (ISA),26 which
has a temperature lapse rate of 6:49 K/km from sea level
to 11 km (the tropopause), and a constant temperature of
�56:5 	C, or about 217 K, from 11 km up to 20 km. We can
then break up the integral in (18) into three parts, one going
up to 11 km, one from 11 to 20 km, where the temperature
remains (approximately) constant, and one from 20 km to in-
finity (n ¼ 1). The break points are at n1 and n2, given by

n1 ¼ 1� e�z=L
� �����

z¼11000m

’ 0:75;

n2 ¼ 1� e�z=L
� �����

z¼20000m

’ 0:92; (19)

where the approximate values assume L ¼ 8000 m.
Equation (18) then becomes, at n ¼ 1,

IðþÞ� jn¼1 ¼ Bð�;Tð0ÞÞe�Nð�Þ þ Nð�Þ
ðn1

0

e�Nð�Þð1�n0ÞBð�; Tðn0ÞÞdn0

þ e�Nð�Þð1�n2Þ � e�Nð�Þð1�n1Þ
� �

Bð�; Tðn1ÞÞ þ Nð�Þ
ð1

n2

e�Nð�Þð1�n0ÞBð�;Tðn0ÞÞdn0

’ Bð�;Tð0ÞÞe�Nð�Þ þ Nð�Þ
ðn1

0

e�Nð�Þð1�n0ÞBð�; Tðn0ÞÞdn0

þ 1� e�Nð�Þð1�n1Þ
� �

Bð�; Tðn1ÞÞ: (20)
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In these equations, we have simplified the initial result by
neglecting the last integral, since n2 is so close to 1 that one
does not expect this term to be very important except for the
very largest values of Nð�Þ. Physically, this amounts to
neglecting all the contributions of the atmosphere above
20 km, on the grounds that the molecular density at those
heights is very low. The main thing we lose from this
approximation is a spike, at the very center of the band, due
to emission by CO2 high in the stratosphere (discussed in
Pierrehumbert’s article; see also Sec. VI). In keeping with
this approximation, we have also set n2 ¼ 1 in the third term
of Eq. (20), so the first exponential becomes just 1 as well;
again this works except at the very center of the band.27

In Eq. (20), Tðn1Þ is the temperature at the tropopause,
that is, approximately 217 K, as stated earlier. The second in-
tegral can be numerically evaluated using the lapse rate
quoted above (6:49 K/km), and the inverse relation between
z and n: z ¼ �L lnð1� nÞ, so that

Bð�;Tðn0ÞÞ ¼ B �; Tð0Þ þ 6:49� 10�3L lnð1� n0Þ
� �

;

(21)

with L in meters.
Consider now how Eq. (20) depends on the frequency �.

The crucial parameter is the optical density Nð�Þ. For small
N, the first term dominates: the atmosphere is mostly trans-
parent at those wavelengths, and the radiation from the Earth
escapes almost unattenuated to space. For large N, on the
other hand, the third term dominates, and is approximately
equal to Bð�;Tðn1ÞÞ: the radiation going out to space is
mostly blackbody radiation corresponding to the temperature
at the tropopause.

The second term in Eq. (20) is almost never very large.
When N is small, it is small because it is multiplied by N;
whereas when N is large, it goes to zero because the expo-
nential goes as exp½�NðvÞð1� n0Þ� � exp½�NðvÞð1� n1Þ�,
which goes to zero as N increases (since n1 < 1). So, what
the second term does is basically to interpolate between
Bð�;Tð0ÞÞ (small N) and Bð�;Tðn1ÞÞ (large N).

A natural interpolation scheme is

IðþÞ� jn¼1 ’ Bð�;Tð0ÞÞe�Nð�Þ�n þ 1� e�Nð�Þ�n
� �

� Bð�; Tðn1ÞÞ; (22)

where �n is some sort of “average n.” Two possibilities
that suggest themselves are: (A) �n ¼ ð1þ ð1� n1ÞÞ=2
¼ 1� n1=2, and (B) �n ¼ 1=½ð1þ 1=ð1� n1ÞÞ=2� (i.e., aver-
age the two exponentials’ “decay rates,” or average their
reciprocals). Figure 3 shows the result of the first choice,
which is extremely close to the exact result. Interestingly, Eq.
(22) is essentially equivalent to Eq. (8.25) of Andrews,5 who
considers a model of a hot black surface below a “single-slab”
isothermal troposphere, with a transmittance which, in our
notation, would be given by e�Nð�Þ�n.

Numerical integration of the interpolation (22), for the pa-
rameters indicated above and the present concentration of
CO2, yields a total flux out to space of about 339 W/m2,
which is 51 W/m2, or about 13%, smaller than the total inten-
sity emitted by a 288 K blackbody. Using xCO2

¼ 0:13 in Eq.
(4) yields T0 ¼ 274:5 K as the temperature of a hypothetical
Earth without any CO2, under the present model, which

would make CO2 responsible for about 13.5 K of the total
(33 K) greenhouse effect. This seems still a bit on the high
side, but it is closer to the right ballpark than the model in
Sec. IV. For instance, Pierrehumbert’s article2 states that
“for present Earth conditions, CO2 accounts for about a third
of the clear-sky greenhouse effect in the tropics and for a
somewhat greater portion in the drier, colder extratropics.”
We note, however, that this is higher than the result recently
obtained by Schmidt and co-workers28 using a general circu-
lation computer model, which puts the CO2 contribution to
the greenhouse effect at 24% (or about 8 K) at most.

The inset in Fig. 3 shows the effect of doubling the CO2

concentration from present values, assuming, to lowest
order, that the temperature profile of the atmosphere does
not change (compare to Fig. 8.7 of Ref. 5). Clearly, as in
the model in Sec. IV, and for the same reason, the range of
“blocked” frequencies for radiation emitted by the surface
increases, only now there is, in fact, some radiation going
out to space at these frequencies. This radiation comes from
the top layer of our model’s atmosphere [the last term in
Eq. (20)], i.e., the region between 11 and 20 km, which we
have assumed to be at the same temperature as the tropo-
pause; since this is much colder than the surface, it emits at
a weaker rate. Again, numerical integration gives an area
under the curve of 334 W/m2 for the doubled CO2 concen-
tration, or a net decrease (keeping one more significant
figure in the calculations) of about 4.2 W/m2. This is within
15% of the current best estimate13 of the CO2 “radiative
forcing equivalent,” which, as mentioned in Sec. II, is about
3:71 W/m2. Using dxCO2

¼ 4:2=390 ¼ 0:011 in Eq. (5), one
gets a climate sensitivity of about 1:3 K, still a bit high, but,
again, in the right ballpark.

Based on the interpolation (22) an analytical expression
for the intensity “removed” from the radiation spectrum can
be obtained by using a trapezoidal approximation to the area
of the “hole” exhibited by the function (22). We start by
identifying frequencies �6 where the radiated intensity is
halfway between the surface rate Bð�; Tð0ÞÞ and the tropo-
pause rate Bð�; Tðn1ÞÞ, which, according to Eq. (22), happens
for e�Nð�6Þ�n ¼ 1=2. Using Eq. (8), we then get

Fig. 3. The transmitted intensity through the atmosphere as a function of

frequency for the model in this section, with L ¼ 8000 m. Gray, thinner

curve: numerical evaluation of Eq. (20). Black, thicker curve: interpolation

(22), with �n ¼ 1þ n1=2 (the two curves are virtually identical at this scale;

the interpolation is very slightly wider around the bottom of the “absorption

gap”). In all cases, the approximate absorption spectrum (8) has been used.

Inset: detail of the gap, for the current CO2 concentration (black curve) and

for double the concentration (gray curve); the trapezoidal approximation

(24) to calculate the gap area in both cases is also shown with dashed lines

(black trapezoid: current concentration; gray: double the concentration).
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�6 ¼ �06
1

r6

ln
n0r0L

lnð2Þ=�n

� �
: (23)

With the parameters we have been using above, one finds
�� ¼ 582 cm�1, and �þ ¼ 759 cm�1.

The area of the trapezoid in Fig. 4 is then

DI’ �þ���
2
½Bð�þ;Tð0ÞÞ�Bð�þ;Tðn1ÞÞ

þBð��;Tð0ÞÞ�Bð��;Tðn1ÞÞ�

’2

r
ln

n0r0L

lnð2Þ=�n

� �
½Bð�0;Tð0ÞÞ�Bð�0;Tðn1ÞÞ�; (24)

where the small difference between rþ and r� has been
neglected, so both are replaced by their average, r, and also
the average of Bð�þÞ and Bð��Þ has been replaced by the
value of B at the center of the band, �0. This very simple
expression shows that the “warming power” of CO2

increases approximately logarithmically with the concentra-
tion n0, a well-known result that here can be seen to follow
directly from the approximately exponential decay of the
absorption cross section rð�Þ illustrated and discussed in
Sec. II. Note that the result (24) is especially sensitive to the
value of r, and that Fig. 1 suggests that, in the critical region
of interest (around 580 and 760 cm�1), the relevant slope
may be steeper than the one used for the overall fit; using a
larger r would reduce our estimates somewhat.

As regards the climate sensitivity, doubling the concentra-
tion n0 in Eq. (24) yields a result that is independent of most
of the model’s parameters, namely

dðDIÞ ’ 2 ln 2

r
½Bð�0; Tð0ÞÞ � Bð�0; Tðn1ÞÞ�; (25)

or about 4:3 W/m2, which is consistent with the result of the
numerical integration described above.

An important feature of the model considered in this sec-
tion is that, in steady state, the atmosphere ends up radiating
more energy (altogether, that is, adding the upwards and
downwards fluxes) than it actually receives through radia-
tion alone from the surface of the Earth. This is clearest in
the “trapezoidal approximation,” where the atmosphere is
taken to be transparent for � < �� and � > �þ, and essen-
tially opaque (a blackbody) for �� < � < �þ. In this range of

frequencies, therefore, the bottom of the atmosphere absorbs
all the power emitted by the surface of the Earth and (since it
is a blackbody at the same temperature) radiates it all back to
the Earth. Power radiated at other frequencies passes through
undisturbed, so it does not count. However, in the same
range of frequencies, �� < � < �þ, the top of the atmos-
phere clearly radiates a non-negligible additional amount of
energy out to space, as a blackbody at the temperature
Tðn1Þ ’ 217 K (see Fig. 4); it is this radiation that is respon-
sible for the “cooling” term in Eq. (24). The question is,
Where does that extra energy come from?

The answer is that the atmospheric temperature profile
that we have used in this section implicitly assumes a
convective-radiative equilibrium, which includes two im-
portant warming mechanisms for the troposphere:29

upwards convection of the air that is warmed by contact
with the surface of the Earth, and condensation (which
releases latent heat) of water vapor that evaporates from the
surface. Both of these processes contribute to cool the
Earth’s surface, beyond the cooling provided by radiation
alone, and hence they may be taken to be ultimately respon-
sible for the largest part of the negative term Bð�0; Tðn1ÞÞ in
Eqs. (24) and (25). This term, corresponding to radiation
out to space from the “top of the atmosphere,” is the main
qualitative difference between the results in this section and
the model in Sec. IV (graphically, it is the reason why the
“ditch” in Fig. 3 is not nearly as deep as the one in Fig. 2).
We can therefore say that the smaller climate sensitivity
found in this section is due to the implicit assumption of
additional, non-radiative cooling mechanisms (convection
and evaporation) for the Earth’s surface, not considered in
Sec. IV.

VI. COMPARISON WITH MORE ACCURATE

CALCULATIONS

All our results are based on a very simplified treatment of a
particular spectral region of the CO2 absorption spectrum.
Naturally, the real world is more complicated in many ways.
Not only is the CO2 spectrum, as already shown in Sec. II,
much more complex than the simple approximation (8), but it
also changes somewhat with atmospheric pressure and con-
tains additional absorption lines in other spectral regions.
There are also other greenhouse gases in the atmosphere that
contribute absorption bands of their own, and at least in one
important case (water vapor below 600 cm�1) overlap with
the CO2 lines to a non-negligible extent. Finally, the spatial
non-uniformity of the temperature profile of the Earth’s
atmosphere cannot be neglected in any serious model: impor-
tant properties such as the Earth’s surface temperature and the
height of the tropopause vary considerably around the world
at any given time.

Given all this, the relatively good agreement between the
results of our model and more sophisticated ones has to be
regarded, at least in part, as fortuitous. To some extent,
however, we may expect the errors introduced by some of
our approximations to cancel each other. For instance, we
have used a purely one-dimensional model, whereas in real
life radiation may travel through the atmosphere in all
directions. Generally speaking, this tends to increase the
effective optical density of the atmosphere (since an
oblique ray travels through a greater thickness of air before
leaving the atmosphere). On the other hand, we have also
neglected the temperature and pressure dependence of the

Fig. 4. MODTRAN calculation (black, solid curve), and our approximation

(dashed, gray curve); see text for details.

313 Am. J. Phys., Vol. 80, No. 4, April 2012 D. J. Wilson and J. Gea-Banacloche 313



molecular CO2 absorption spectrum, using only a result
valid at standard pressure and temperature; higher in the
atmosphere, at lower pressures and temperatures, the lines
tend to narrow and their absorbing strength decreases. This
error, therefore, would at least in part tend to cancel out the
previous one.

Since it is not our intention to turn this into a research pa-
per, we have deliberately avoided all these complications,
but it would be natural for the reader to wonder how our
approximations actually compare to the results of more so-
phisticated calculations. David Archer, of the University of
Chicago, has set up a Web interface9 to a “narrow band
model” atmospheric radiative transfer code called MODTRAN

(developed by Spectral Sciences and the U.S. Air Force),
which solves the radiative transfer equations for a variety of
possible scenarios. We have found it instructive to “play”
with this simulator and compare its results to ours. In this
section, we present some of the highlights of such compari-
sons; the reader is encouraged to experiment further on his
or her own.

The simulator has a few preset scenarios. The closest to
ours is the one labeled “1976 US Standard Atmosphere,” and
for the best agreement with our calculations, one should set
the concentrations of all the other greenhouse gases, such as
CH4 and ozone, equal to zero. To completely remove water
vapor, set “Water Vapor Scale” to zero as well. Also set the
CO2 concentration to 390 ppm. The result of the MODTRAN

calculation is then shown in Fig. 4, along with our approxi-
mation (22) (dashed line).

Clearly, the qualitative agreement is quite good, although
there are important discrepancies as well. The bottom of the
absorption gap, as calculated by MODTRAN, seems to corre-
spond to emission at a higher temperature (about 220 K)
than the 217 K we have used for our approximations. The
sharp spike in the middle of the absorption band, mentioned
earlier, and discussed in Pierrehumbert’s article, is due to
emission by CO2 in the (much warmer) upper stratosphere;
interestingly, it can be made to vanish from the MODTRAN

calculation by setting the “sensor altitude” low enough, for
instance, at 20 km; this also seems to bring the bottom of
the gap generally a little lower down. The “real” gap also
appears to be somewhat narrower than in our calculations,
and with rougher sides. There is also a secondary CO2

absorption feature around 1284 cm�1 (7:79lm).
The MODTRAN calculator also produces a result for Iout, the

total flux out to space, for the spectral interval shown (100 to
1500 cm�1), which in this case is about 312:9 W/m2. Dou-
bling the CO2 concentration reduces Iout to 309:4 W/m2, so
according to this calculation dðDIÞ ¼ 3:5 W/m2, somewhat
lower than the “canonical” CO2 radiative forcing equivalent
of 3:71 W/m2. The discrepancy is even more noticeable when
MODTRAN is run with other greenhouse gases reset to their
default values: 1:7 ppm of CH4, 28 ppb of tropospheric ozone,
stratospheric ozone scale ¼ 1 and water vapor scale ¼ 1.
With these settings, and 390 ppm of CO2, one gets for the
“1976 US Standard Atmosphere” scenario Iout ¼ 258:7 W/
m2, which goes down to 255:8 W/m2 for 780 ppm of CO2, for
a change of less than 3 W/m2. This would suggest a
dxCO2

’ 3=390 ’ 0:008, which substituted in Eq. (5) gives a
no-feedback climate sensitivity of about 0:9 K. Note, how-
ever, that other scenarios (such as “tropical atmosphere”)
yield still different results, showing that disentangling the
effect of CO2 alone from all the other “real world” forcings is
not a trivial task.

VII. CONCLUSIONS

We have shown here how a couple of simple physical
models, together with basic observational data, can be used
to establish the importance of CO2 as a greenhouse gas in
the Earth’s present-day atmosphere. The input data that we
have used are the absorption spectrum of molecular CO2,
and, in Sec. V, the temperature profile of the “standard
atmosphere.” We have pointed out that the latter cannot be
explained, as far as energy conservation is concerned, by
radiative physics alone, and therefore would require, if one
tried to derive it from first principles, a consideration of
other heat transfer mechanisms, such as convection and
evaporation; nonetheless, taking this “lapse rate” as a given,
we have shown how radiative physics then leads in a fairly
straightforward manner to an estimate for the CO2 radiative
forcing that is not very different from the currently accepted
best value. We have also, in Sec. IV, considered a model
without any convective cooling, whose results may be
regarded as providing an upper bound to the true “no-
feedback” climate sensitivity.

The question of feedbacks, in its broadest sense, is the
whole question of climate change: namely, how much and in
which way can we expect the Earth to respond to an increase
of the average surface temperature of the order of 1 degree,
arising from an eventual doubling of the concentration of CO2

in the atmosphere? And what further changes in temperature
may result from this response? These are, of course, questions
for climate scientists to resolve. We can only say, from the
results presented here, that such a doubling would be initially
(that is, before any feedbacks “kick in”) equivalent to an
increase of about 4 W/m2 in the average solar irradiance at the
Earth’s surface. This is like increasing the quantity I0 on the
right-hand-side of Eq. (2) by about 22 W/m2; or, equivalently,
increasing the sun’s brightness by about 1:6%.
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