000-000

Sea-Level Acceleration: Analysis of the World's High-Quality Tide Gauges

0

J.R. Houston

Engineer Research and Development Center Corps of Engineers Vicksburg, MS 39180, U.S.A. james.r.houston@usace.army.mil

www.cerf-jcr.org

www.JCRonline.org

ABSTRACT

Houston, J.R., 0000. Sea-level acceleration: Analysis of the world's high-quality tide gauges. *Journal of Coastal Research*, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208.

Coastal sea-level acceleration is analyzed using all of the world's high-quality tide gauge recordings with lengths of at least 75 years that extend through 2017–19. Earlier studies have demonstrated that tide gauge recordings of at least 75 years in length are required to reduce the effects of multidecadal variations on acceleration. There are 149 tide gauge records that meet the criteria. Mean and median sea-level accelerations based on these gauges were 0.0128 ± 0.0064 mm/y² and 0.0126 ± 0.0080 mm/y², respectively, both at the statistically significant 95% confidence level. The mean acceleration is larger than that of earlier studies that analyzed fewer gauges or considered record lengths shorter than 75 years.

ADDITIONAL INDEX WORDS: Global sea-level rise, tide gauges, decadal variations, climate change, decadal variations.

INTRODUCTION

Altimeter recordings show that from 1993–2018 the sea level rose a rate of 3.1 mm/y (University of Colorado, 2020). If this rise rate were to continue from 2020–2100, sea level would rise about 0.25 m by 2100. However, due to increasing global temperatures, the rate of sea-level rise is expected to increase. IPCC (2019) projected that the rate of sea-level rise for its Representative Concentration Pathways scenarios 2.6, 4.5, and 8.5 watts/m² would average 4, 7, and 15 mm/y, respectively, by 2100 with corresponding mean sea-level rises of 0.43, 0.55, and 0.84 m. Sea-level rise must accelerate to reach these greater levels. Great interest has been shown in determining whether sea-level acceleration has been detected to date in tide gauge recordings.

Requirement for Records at Least 75 Years in Length

Multidecadal temporal variations in coastal sea-level obscure sea-level acceleration (Douglas, 1992; Woodworth, 1990). Wenzel and Schröter (2010) analyzed recordings of 56 tide gauges from around the world from 1900–2006 and found that coastal sea level was dominated by oscillations with periods of about 25 years and 50–75 years. Jevrejeva *et al.* (2006) found "substantial" 13–30 year periodicity in tide gauge records, and Holgate (2007) noted a 20-year cycle in the rate of sea-level rise. These multidecadal sea-level variations are caused in part by ocean response to natural climate variations in the patterns of wind stress and atmospheric pressure (Bromirski *et al.* 2011; Merrifield, 2011; Sturges and Douglas, 2011; Sturges and Hong, 2001). The impact of multidecadal variations in determining sealevel acceleration can be significantly reduced by increasing the record lengths of tide gauges that are analyzed (Douglas, 1992).

Douglas (1992) calculated accelerations for all worldwide tide gauge records with lengths of 10 years or more that were in the database of the Permanent Service for Mean Sea Level (PSMSL). Douglas found that the scatter of acceleration values increased rapidly with a decrease in record length, that accelerations were as likely to be negative as positive, and that the magnitude of the variations for 10-year record lengths ranged from about -1 mm/y^2 to $+1 \text{ mm/y}^2$. Houston and Dean (2013) updated the analysis of Douglas (1992) with 20 years of additional data using the same approach. They determined acceleration vs. record length for PSMSL tide gauge records with lengths of 10–100 years (1123 records), as seen in Figure 1. A large number of records have been added since Douglas (1992), with record lengths of 10-20 years (Figure 1). For record lengths of 10 years, accelerations vary by a very large ± 2 mm/y², which would change sea level by ± 10 m if they persisted for 100 years. The range of scatter decreases almost two orders of magnitude from $\pm 2 \text{ mm/y}^2$ for record lengths of 10 years to about ± 0.03 mm/y² for record lengths of 75 years. The range of scatter at a record length of 60 years is about five times that of 75 years, an indication that Douglas (1992) followed the correct path in analyzing only tide gauge records that were 75 years or greater in length. Figure 1 shows that 100-year records have about the same degree of scatter as 75year records.

The problem of using records less than 75 years in length to analyze sea-level acceleration is illustrated by Boon and Mitchell (2015), who used 40–60 year sections of longer records. For example, they analyzed 46 years from 1969–2014 of the San Diego, California, United States, tide gauge record, determined that it had a negative acceleration of $-0.103 \pm 0.144 \text{ mm/y}^2$, and used this to project a mean fall in sea level in

DOI: 10.2112/JCOASTRES-D-20-00101.1 received 17 July 2020; accepted in revision 21 October 2020; corrected proofs received 8 December 2020; published pre-print online 13 January 2021. ©Coastal Education and Research Foundation, Inc. 2021

Figure 1. Accelerations vs. gauge record lengths using 1123 PSMSL tide gauges records with lengths of 10–100 years and illustrating the importance of analyzing only records with length 75 years or greater (from Houston and Dean [2013]).

San Diego by the year 2050. However, San Diego has a tide gauge record starting in 1906. Using monthly sea-level data from PSMSL, Houston (2016) showed that by taking the entire San Diego record from 1906-2019, starting with a 46-year record from 1906–1951 and then moving the analysis a year to 1907-52 and so on until 1974-2019, Figure 2 was obtained. Figure 2 shows that acceleration depends strikingly on the 46year period considered. The acceleration for 1974-2019 is 0.113 ± 0.077 mm/y² (95% = 95% confidence level). An additional five years of record results in a change from a large negative to a large positive acceleration. For the total record from 1906-2019, San Diego has an acceleration of $0.011 \pm 0.007 \text{ mm/y}^2$ (95%), an order of magnitude less than the absolute values of the 1969-2014 and 1974-2019 accelerations. Houston and Dean (2013) showed that if one uses 40–60 year records, every long gauge record in the world has large variations in acceleration due to multidecadal variations that are similar to that of the San Diego record.

Ground Motions at Tide Gauges

Tide gauges measure relative sea-level rise. If the vertical ground motion is constant, it affects sea-level trend, but not acceleration. However, if the motion is not constant, it affects determination of acceleration. For example, short-term vertical tectonic movements, such as those arising from earthquakes, can cause significant datum changes that, if uncorrected, lead to spurious accelerations when gauge recordings are analyzed. Similarly, there are cases where land development and groundwater extraction have changed the rate of local ground vertical motion at tide gauges, leading to spurious accelerations. Sea-level acceleration is not affected by relatively constant vertical ground motions such as glacial isostatic adjustment (Douglas, 1992; Woodworth, Menendez, and Gehrels, 2011). Tide gauges that are at locations with questionable vertical motions should be excluded in analyses of acceleration.

Sea-Level Acceleration Studies

Several studies have analyzed sea-level acceleration, generally addressing multidecadal sea-level variations by considering only long tide gauge records and excluding questionable recordings.

Figure 2. Sea-level acceleration at San Diego based on using 46-year analysis windows from 1906–2019. In a period of only 5 years, the acceleration changes from a large negative to positive value. It is clear that 46-year records cannot be used to project future sea-level rise.

Douglas (1992) analyzed 23 representative global tide gauge records that each had 80 years of data from 1905–85 and determined a sea-level acceleration of $-0.011 \pm 0.012 \text{ mm/y}^2$ (standard deviation [SD]). Houston and Dean (2011) extended Douglas's work into the 21st century by adding 25 years to his analysis to extend it to 1905–2010. They obtained a sea-level acceleration almost the same as Douglas at $-0.012 \pm 0.012 \text{ mm/y}^2$ (SD). Based on studies such as those of Woodworth (1990) and Douglas (1992), the Intergovernmental Panel on Climate Change (IPCC, 2001) concluded, "There is no evidence for any acceleration of sea level rise in data from the 20th century data alone."

Holgate (2007) analyzed nine long and representative worldwide tide-gauge records over a 100-year period from 1904–2003 and found the sea-level trend higher in the period 1904–53 than the period 1954–2003. The difference in trend he found was equivalent to an acceleration of -0.0012 mm/y^2 .

Jevrejeva *et al.* (2008) developed synthetic "virtual stations" using all 1023 tide gauge records in the PSMSL data base regardless of record length. They had 385,324 individual monthly records for the 1023 gauges, resulting in an average record length of about 30 years. The gauges they considered had record lengths very similar to those in Figure 1, which has about 5 years of additional data. Records extended from as early as 1700 to 2000. They concluded that global sea-level acceleration up to the 2008 was about 0.01 mm/y² and appeared to have started at the end of the 18th century.

Wenzel and Schröter (2010) reconstructed mean sea level from 56 tide gauge recordings from 1950–2006 using neural networks and found that some ocean basins had small sea-level accelerations and others small decelerations. They found a global acceleration for all the gauge recordings of 0.0016 \pm 0.0043 mm/y² (SD).

Church and White (2011) used TOPEX/Poseidon satellite altimeter data from 1993–2009 to estimate global empirical orthogonal functions (EOFs) that were then combined with historical tide gauge data to estimate global sea-level rise from 1880–2009 and 1900–2009. This enabled them to combine the benefits of the relatively short time but virtually complete global coverage produced by satellite altimetry with the relatively long time with spatially sparse coverage of world tide gauges. They combined records of nearby tide gauges, resulting in 290 records. Records lengths varied from about 12 to 202 years with an average record length of 55 years. They found considerable variability in sea-level acceleration during the 20th century and a global acceleration from 1880–2009 of 0.009 \pm 0.003 mm/y² and from 1900–2009 of 0.009 \pm 0.004 mm/y² (SD).

Ray and Douglas (2011) also used EOFs based on approximately 17 years (1993–2009) of satellite altimetry from the TOPEX/Poseidon, Jason-1, and Jason-2 satellite missions. Their approach attempted to address the problem of unknown tide-gauge datums in Church and White (2011), although they concluded their own approach also had problems. They used data at 89 tide gauges with at least 40 years of data and a median timespan of 64 years. They concluded that no statistically significant acceleration occurred in global mean sea level. They noted that there was no reason to assume that EOFs based on 17 years of altimetry were sufficient to describe sea level throughout the 20th century or before.

Olivieri and Spada (2013) analyzed tide gauge records with the single criterion that record lengths be greater than 50 years. They did not eliminate tide gauge records for any reason, including gauges in Japan where nearby earthquakes had occurred. They used 315 tide gauge records that had record lengths greater than 50 years during the time period from 1810–2010. From figure 6a of Spada and Galassi (2012), about 60% of the tide gauges that Olivieri and Spada (2013) considered had record lengths between 50–75 years, so their analysis was dominated by gauges with records less than 75 years. As seen in Figure 1, this results in their sea-level acceleration being significantly affected by multidecadal variations. They calculated an acceleration of $0.0042 \pm 0.0024 \text{ mm/y}^2$.

Hogarth (2014) analyzed sea-level acceleration, using up to 117 tide gauge records greater than 100 years in length and in most cases with at least 75% of data. The data were from PSMSL and extended through 2012. However, he noted that only 50 of the tide gauge recordings that he used from the PSMSL data set with lengths over 100 years were of revised local reference (RLR) quality. RLR-quality data are controlled tide gauge time series where a tide gauge datum history is provided by the supplying authority. Non-RLR gauge data are not strictly quality controlled, with benchmarks having been lost or time series having gaps. Hogarth (2014) carefully used a variety of other data sources to fill in data gaps or to extend data series, including use of historical documents and ancillary data. In addition, Hogarth developed composite time series using near-neighbor tide gauges. His figure 3 shows that about two-thirds of the gauges he analyzed had records with data that he added. Using this approach, he added 4800 years of synthetic record to the analysis. This is an average addition of more than 60 years per record for the two-thirds of the gauges he extended. He obtained an acceleration of 0.0105 \pm 0.0081 mm/y^2 (90% confidence level).

METHODS

This section describes the least-squares method that was used to determine sea-level acceleration, the source of the tide gauge data set, and the criteria used to winnow the set. The analysis of sea-level acceleration uses a least-squares fit of the standard quadratic equation:

$$y(t) = a_0 + a_1 t + (a_2/2)t^2$$
(1)

where, y(t) is the measured tide level at time t in years, a_0 is a constant, a_1 is the linear trend, and a_2 is the acceleration in mm/y².

Monthly gauge data that were used were from PSMSL (Holgate et al. 2013; PSMSL, 2020). Only tide-gauge records of length 75 years or greater that were RLR quality controlled and at least 75% complete were considered. Records were rejected if PSMSL had a warning. For records of 75 years or longer, there were warnings for Batumi, Georgia, on the Black Sea (PSMSL ID 51): Manila, Philippines (ID 145): Garden Reach, India (ID 438); Fort Phrachula Chomklao, Thailand (ID 444); and Valparaiso, Chile (ID 499). Hogarth (2014) included Batumi and Manila in his analysis. However, for example, PSMSL points out that Manila had a rapid increase in relative sea level starting in about 1965 due to sediment deposition from the river discharge and extensive land reclamation with subsidence a likely factor. From 1901 to 1965, relative sea level at the Manila tide gauge at a rose rate of about 1.5 mm/y, but from 1965 through 2018 it rose at a rate of 14.2 mm/y.

In addition to requiring records at least 75 years in length, only records continuing to 2018–20 (that is, through 2017–19) were considered. When the records were accessed in 2020, most gauges had records through 2018, but some records were through 2017 or 2019, with an average termination date for all records of 2018.3. Records terminating before 2017 were not considered because these records are missing part or all of the increase in the rate of sea-level rise that has been recorded since at least the end of 1992 by satellite altimeters (Church *et al.* 2008). For example, the Finland gauges at Lyokki (ID 16) and Lypyrtti (ID 17) were not considered because their records extend from 1858–1936. Similarly, the Aberdeen II (ID 21) gauge in the United Kingdom has records from 1862–1965. Hogarth (2014) used these records, employing a method to fill gaps, presumably by comparing to nearby gauges.

There are 149 tide gauge records that satisfy the criteria used.

RESULTS

This section provides a brief summary of mean and median accelerations calculated using Equation (1) for each of the 149 tide gauge records. In addition, the change in mean and median values are given if records are shortened by 5 and 10 years.

Table 1 shows the 149 tide gauges considered, their PSMSL IDs, start (beginning of the year listed) and end times (end of the year listed), length of records, country locations, and a_2 values. These records have an average length of 106 years, with 110 records having positive accelerations and 39 negative accelerations.

The mean acceleration based on the 149 records is $0.0128 \pm 0.0064 \text{ mm/y}^2$ (95%). As in Douglas (1992), the computed error of the mean is from the residuals about the mean, not from the error estimates of the individual gauge records. The acceleration based on the median is a similar $0.0126 \pm 0.0080 \text{ mm/y}^2$ (95%). Shapoval *et al.* (2020) found an acceleration median larger than the mean and recommended that the median be

Table 1. Accelerations determined for 149 worldwide gauges with records extending for 75 years or more through at least the years 2017–19.

Name	ID	Start	End	Years	Location	$a_2 \text{ mm/y}^2$
BREST	1	1807	2018	212	France	0.0128
SHEERNESS	3	1832	2018	187	Great Britain	0.0172
HOLYHEAD	5	1938	2018	81	Great Britain	0.0244
CUXHAVEN 2	7	1843	2018	176	Germany	-0.0034
WISMAR 2	8	1848	2018	171	Germany	0.0044
MAASSLUIS	9	1848	2018	171	Netherlands	0.0042
SAN FRANCISCO	10	1854	2019	166	United States	0.0146
WARNEMUNDE 2	11	1855	2018	164	Germany	0.0066
NEW YORK	12	1856	2019	164	United States	0.0034
TRAVEMUNDE	13	1856	2018	163	Germany	0.0012
HELSINKI	14	1879	2018	140	Finland	0.0246
VLISSINGEN	20	1862	2018	157	Netherlands	0.0302
HOEK VAN HOLLAND	22	1864	2018	155	Netherlands	-0.0016
DEN HELDER	23	1865	2018	154	Netherlands	0.0036
DELFZIJL	24	1865	2018	154	Netherlands	0.0144
HARLINGEN	25	1865	2018	154	Netherlands	-0.0020
IJMUIDEN	32	1871	2018	148	Netherlands	0.0254
POTI	41	1874	2018	145	Georgia	0.0212
STAVANGER	47	1919	2019	101	Norway	0.0204
VAASA / VASA	57	1883	2018	136	Finland	0.0140
BERGEN	58	1915	2019	105	Norway	0.0184
MARSEILLE	61	1885	2018	134	France	-0.0032
OSLO	62	1885	2019	135	Norway	-0.0110
OLANDS NORRA UDDE	69	1887	2018	132	Sweden	0.0048
KUNGSHOLMSFORT	70	1887	2018	132	Sweden	0.0116
HANKO / HANGO	71	1887	2018	132	Finland	0.0184
AARHUS	76	1888	2017	130	Denmark	0.0100
STUCKHULM	78	1889	2018	130	Sweden	0.0130
OULU/ULEABORG	79	1889	2018	130	Finland	-0.0030
EDEDEDICIA	80	1009	2017	129	Denmark	0.0110
FREDERICIA	81	1889	2017	129	Denmark	0.0058
DATAN	82	1809	2017	125	Sweden	0.0100
HIRTSHALS	80	1892	2010	127	Donmark	0.0080
FREDERIKSHAVN	91	1894	2017	120	Donmark	0.0062
NORTH SHIELDS	95	1895	2017	124	Great Britain	-0.0000
SLIPSHAVN	98	1896	2010	124	Denmark	0.0126
FREMANTLE	111	1897	2019	122	Australia	0.0058
FERNANDINA BEACH	112	1897	2019	123	United States	0.0190
KORSOR	113	1897	2017	121	Denmark	0.0086
KLAIPEDA	118	1898	2018	121	Lithuania	0.0436
HORNBAEK	119	1891	2017	127	Denmark	0.0210
GEDSER	120	1892	2017	126	Denmark	0.0058
TROIS-RIVIERES	126	1899	2018	120	Canada	-0.0602
SEATTLE	127	1899	2019	121	United States	0.0098
ABURATSUBO	130	1930	2018	89	Japan	0.0142
WAJIMA	132	1930	2018	89	Japan	0.0704
HOSOJIMA	133	1930	2018	89	Japan	0.0228
PHILADELPHIA	135	1900	2019	120	United States	0.0216
BATISCAN	144	1901	2018	118	Canada	-0.0246
BALTIMORE	148	1902	2019	118	Unites States	0.0074
TRIESTE	154	1875	2019	145	Italy	0.0046
HONOLULU	155	1905	2019	115	United States	-0.0034
SAN DIEGO	158	1906	2019	114	United States	0.0108
GALVESTON II	161	1908	2019	112	United States	0.0182
BALBOA	163	1908	2019	112	Panama	-0.0056
TOFINO	165	1909	2018	110	Canada	0.0206
VICTORIA	166	1909	2018	110	Canada	0.0074
PRINCE RUPERT	167	1909	2018	110	Canada	0.0124
KANTYLUUIU	172	1910	2018	109	Finland	0.0324
NO LAK VANCOLVEP	175	1000	2018	19	Canada	0.1172
SMOGEN	170	1011	2010	108	Sweden	0.0200
ATLANTIC CITY	180	1911	2010	100	United States	0.0350
PORTLAND	183	1919	2019	108	United States	_0.0104
KEY WEST	188	1913	2019	107	United States	0.0040
NEUVILLE	192	1914	2018	105	Canada	-0.0108
POINT ATKINSON	193	1914	2018	105	Canada	-0.0040

Name	ID	Start	End	Years	Location	$a_2 \mathrm{~mm/y^2}$
PIETARSAARI /IAKOBSTAD	194	1914	2018	105	Finland	0.0378
SAINT JOHN NB	195	1896	2018	123	Canada	-0.0068
SYDNEY FORT DENISON 2	196	1914	2019	106	Australia	0.0164
DESCHAILLONS	201	1915	2018	104	Canada	-0.0320
NEWLYN	202	1915	2018	104	Great Britain	0.0100
FURUOGRUND	203	1916	2018	103	Sweden	0.0560
TUAPSE	215	1917	2018	102	Russia	0.0172
PORT PIRIE	216	1941	2018	78	Australia	0.0960
WELLINGTON HARBOUR	221	1944	2018	75	Australia	0.0476
LEWES	224	1924	2019	96	United States	0.0350
KETCHIKAN	225	1919	2019	101	United States	-0.0220
KEMI	229	1920	2018	99	Finland	0.0350
CHARLESTON I	234	1921	2019	99	United States	0.0052
BOSTON	235	1921	2019	99	United States	-0.0028
WEST-TERSCHELLING	236	1921	2018	98	Netherlands	0.0264
TURKU/ABO	239	1922	2018	97	Netherlands	0.0300
RAAHE/BRAHESTAD	240	1922	2018	97	Finland	0.0248
LOS ANGELES	245	1923	2019	97	United States	0.0204
PENSACOLA	246	1923	2019	97	United States	0.0214
FOGLO/DEGERBY	249	1923	2018	96	Aland Islands	0.0112
LA JOLLA	256	1924	2019	96	United States	0.0034
ASTORIA	265	1925	2019	95	United States	0.0134
KASKINEN/KASKO	285	1926	2018	93	United States	0.0382
SEWELLS POINT	299	1927	2019	93	United States	0.0258
HILO, HAWAII ISLAND	300	1927	2019	93	United States	-0.0168
TREGDE	302	1927	2019	93	Norway	0.0152
ANNAPOLIS	311	1928	2019	92	United States	0.0098
NARVIK	312	1928	2019	92	Norway	-0.0040
HEIMSJO	313	1928	2019	92	Norway	0.0302
HAMINA	315	1928	2018	91	Finland	0.0184
KLAGSHAMIN EASTDOPT	330	1929	2018	90	Sweden United States	0.0110
NEWDOPT	251	1929	2019	91	United States	-0.0150
MERA	359	1931	2015	88	Janan	0.0104
WASHINGTON DC	360	1931	2010	89	United States	0.0258
ABERDEEN I	361	1931	2018	88	Great Britain	0.0250
SANDY HOOK	366	1932	2019	88	United States	0.0106
WOODS HOLE	367	1932	2019	88	United States	0.0240
ST. GEORGES	368	1932	2019	88	Bermuda	0.0024
RAUMA / RAUMO	376	1933	2018	86	Finland	0.0098
SANTA MONICA	377	1933	2019	87	United States	-0.0042
CRESCENT CITY	378	1933	2019	87	United States	-0.0054
FRIDAY HARBOR	384	1934	2019	86	United States	0.0120
NEAH BAY	385	1934	2019	86	United States	-0.0160
ST. JOHN'S, NFLD.	393	1935	2018	84	Canada	-0.0022
CEBU	394	1935	2018	84	Philippines	0.0558
FORT PULASKI	395	1935	2019	85	United States	0.0364
WILMINGTON CASCNUTZ	390	1935	2019	80	United States	0.0474
SASSINI IZ	397	1935	2018	84	Germany United States	0.0118
UCHILIDA	405	1930	2019	04 75	Jonan	-0.0312
SOLOMON'S ISLAND	412	1937	2010	83	United States	0.0440
OOSTENDE	413	1937	2015	81	Belgium	0.0412
ANDENES	425	1938	2019	82	Norway	-0.0028
SITKA	426	1938	2019	82	United States	-0.0344
CHARLOTTETOWN	427	1911	2018	108	Canada	-0.0006
CEDAR KEY II	428	1938	2019	82	United States	0.0704
NEW LONDON	429	1938	2019	82	United States	0.0460
PROVIDENCE	430	1938	2019	82	United States	0.0418
MONTEVIDEO	431	1938	2018	81	Uruguay	-0.0006
ALAMEDA	437	1939	2019	81	United States	0.0208
YAKUTAT	445	1940	2019	80	United States	-0.2390
KO TAPHAO NOI	446	1940	2018	79	Thailand	0.2192
CHURCHILL	447	1940	2018	79	Canada	-0.0220
PORT ADELAIDE	448	1940	2018	79	Australia	-0.0156
LE HAVRE	453	1938	2018	81	France	0.0432
DUNKERQUE	468	1942	2018	77	France	-0.0462
ST JEAN DE LUZ	469	1942	2017	76	France	-0.0122

Table	1.	(continued).

ID	Start	End	Years	Location	$a_2 \text{ mm/y}^2$
470	1942	2017	76	Belgium	0.0294
483	1943	2018	76	Spain	-0.0610
484	1943	2018	76	Spain	0.0054
485	1943	2018	76	Spain	0.0180
486	1943	2019	77	Norway	0.0568
487	1943	2019	77	United States	-0.0778
488	1943	2018	76	Spain	0.0990
489	1943	2017	75	Belgium	0.0142
495	1944	2019	76	United States	-0.1222
497	1944	2019	76	United States	0.0856
498	1944	2018	75	Spain	0.0206
508	1945	2019	75	United States	0.0168
509	1945	2019	75	Norway	0.0224
	ID 470 483 484 485 486 487 488 489 495 497 498 508 508	ID Start 470 1942 483 1943 484 1943 485 1943 486 1943 487 1943 488 1943 489 1943 489 1944 495 1944 497 1944 498 1944 508 1945 509 1945	ID Start End 470 1942 2017 483 1943 2018 484 1943 2018 485 1943 2018 486 1943 2019 487 1943 2019 488 1943 2017 495 1944 2019 495 1944 2019 497 1944 2019 498 1944 2018 508 1945 2019 509 1945 2019	ID Start End Years 470 1942 2017 76 483 1943 2018 76 484 1943 2018 76 485 1943 2018 76 486 1943 2019 77 487 1943 2019 77 488 1943 2017 75 495 1943 2017 75 495 1944 2019 76 497 1944 2018 75 508 1944 2018 75 508 1945 2019 75	ID Start End Years Location 470 1942 2017 76 Belgium 483 1943 2018 76 Spain 484 1943 2018 76 Spain 485 1943 2018 76 Spain 486 1943 2019 77 Norway 487 1943 2019 77 United States 488 1943 2017 75 Belgium 489 1943 2017 75 Belgium 495 1944 2019 76 United States 497 1944 2019 76 United States 498 1944 2018 75 Spain 508 1944 2019 75 United States 509 1945 2019 75 United States

used; however, they analyzed only 32 gauge records, a subset of the 149 gauge records used in this analysis, and they used 40–60 year windows.

To see how the acceleration varies with record length, means and medians were also calculated for records reduced in lengths by 5 and 10 years. Keeping all gauge records, means and medians were 0.0073 ± 0.0066 mm/y² (95%) and $0.0112 \pm$ 0.0082 mm/y^2 (95%), respectively, for reductions of 5 years and $0.0054 \pm 0.0067 \text{ mm/y}^2$ (95%) and $0.0072 \pm 0.0084 \text{ mm/y}^2$ (95%), respectively, for reductions of 10 years. If gauge records less than 75 years in length are eliminated from the analysis of reducing record lengths by 5 and 10 years, means and medians are $0.0059 \pm 0.0055 \text{ mm/y}^2$ (95%) and $0.0104 \pm 0.0069 \text{ mm/y}^2$ (95%), respectively, for reductions of 5 years and 0.0062 \pm 0.0048 mm/y^2 (95%) and $0.0072 \pm 0.0060 \text{ mm/y}^2$ (95%), respectively, for reductions of 10 years. Medians exceed means for the reduced periods as Shapoval et al. (2020) found in their analysis. The value of means and medians decrease when records are decreased by 5 and 10 years. If only record lengths of 75 or greater are retained, accelerations are still at the 95% confidence level.

DISCUSSION

This section shows that sea-level accelerations vary little when records with "outlier" values are excluded from the analysis; notes results are consistent with IPCC (2019) conclusions and compares accelerations with those determined in other studies.

Four gauge records are outliers, with absolute values of acceleration greater than 0.1 mm/y^2 : Ko Lak (ID 174), Yakutat (ID 445), Ko Taphao Noi (ID 446), and Skagway (ID 495). The tide gauges at Ko Lak and Ko Taphao Noi in Thailand are near rapidly developing tourist towns (Phuket and Hua Hin) where groundwater has been increasing withdrawn, and this has likely caused accelerated ground subsidences and, therefore, large positive relative sea-level rise accelerations. Yakutat and Skagway are in areas where the ground has been rebounding from the age of glaciation, and an increasing melting of glaciers due to climate warming has occurred that may be increasing ground upward movement, causing large negative relative sealevel rise accelerations. The PSMSL did not have warnings for these four gauges. If these four gauges are eliminated from the analysis, leaving 145 gauge records, the mean and median

accelerations are 0.0133 \pm 0.0042 and 0.0126 \pm 0.0053 mm/y² (95%), respectively. If the 17 gauges with an absolute value greater than 0.05 mm/y² are eliminated, the mean and median accelerations are 0.0115 \pm 0.0029 and 0.0119 \pm 0.0037 mm/y² (95%), respectively. For all of these cases, positive accelerations occur at the statistically significant 95% confidence level. Elimination of outliers did not have a significant effect on mean and median values.

The IPCC (2019) concluded with "high confidence" that global mean sea level was accelerating and had a "very high confidence" that the sum of ice sheet and peripheral glacier contributions from Greenland and Antarctica had become the dominant source of global mean sea-level rise. The IMBIE Team (2018, 2020) showed that Greenland and Antarctica were contributing an increasing 435 gigatons/y of ice melt from 2007-12 to 463 gigatons/y from 2010-17. They also noted that there was substantial evidence for the existence of a "sustained increase in the rate of sea level rise over the 20th century and early part of the 21st century." This study shows an increasing acceleration in mean sea level when only gauges with record lengths of at least 75 years are retained with an acceleration of $0.0059 \pm 0.0055 \text{ mm/y}^2$ (95%) to 2007–09, $0.0062 \pm 0.0048 \text{ mm/}$ y^2 (95%) to 2012–14, and 0.0128 \pm 0.0064 mm/y² (95%) to 2017-19.

Table 2 compares results of this study with earlier ones. The mean acceleration determined in this study of 0.0128 ± 0.0064 mm/y^2 (95%) is similar to but larger than mean accelerations determined in the earlier studies. These studies have typically determined mean accelerations from about -0.01 to 0.01 mm/ y². Only Douglas (1992), Holgate (2007), Houston and Dean (2011), and Hogarth (2014) used tide gauge data with record lengths of 75 years or greater. However, except for Hogarth, who analyzed 117 gauge records, these studies analyzed fewer than 24 gauges. Of the 117 gauge records analyzed by Hogarth (2014), 67 used non-RLR data that are not strictly quality controlled. About half of the gauge records considered in this paper have lengths 75-99 years and are not in Hogarth's data set. Moreover, for about half of the records with lengths of 100 years or greater that were analyzed in this paper, Hogarth filled gaps or extended records by adding on average of over 60 years of data. Therefore, only about 25% of tide gauge measured data in the two studies are in common. In addition, his records extended through 2012, whereas records in this

Table 2. Comparisons of results in earlier studies with those of this study.

Study	Number of Gages	Based Completely on Measurements	Record Lengths Years	Period Years	$a_2 \text{ mm/y}^2$
Douglas (1992)	23	Yes	80	1905-85	-0.011 ± 0.012
Holgate (2007)	9	Yes	100	1904 - 2003	-0.0012
Jevrejeva et al. (2008)	1023	No	Average 30	1700 - 2000	0.01
Wenzel and Schröter (2010)	56	No	56	1950 - 2006	0.0016 ± 0.0043
Houston and Dean (2011)	23	Yes	105	1905 - 2010	-0.012 ± 0.012
Church and White (2011)	290	No	Average 55	1880 - 2009	0.009 ± 0.003
Ray and Douglas (2011)	89	No	>40	1807 - 2009	0.00
Olivieri and Spada (2013)	315	Yes	$>\!50$	1810-2010	0.0042 ± 0.0024
Hogarth (2014)	117	No	>100	1807 - 2012	0.0105 ± 0.0081
This study	149	Yes	> 75	1807 - 2019	0.0128 ± 0.0064

analysis extend through 2017–19. Despite these significant differences, both analyses show similar and statistically significant accelerations.

Watson (2011, 2016, 2017) showed in analyses of tide gauge records in Australia, the United States, and Europe that recent accelerations in these records were not abnormal or higher than short-term rates measured at these locations in the historical record. Watson (2017) concluded in his analysis of records in Europe through 2014 that another 15–20 years of records would be necessary to determine an acceleration that was statistically significant above similar accelerations in the historical record. However, Haigh *et al.* (2014) noted that rates significantly higher than the past are "likely to become detectable later this decade, or early next decade." This study matches the time frame of "later this decade," and the results are statistically significant at the 95% level.

CONCLUSIONS

An analysis of 149 tide gauge records with lengths at least 75 years (average of 106 years) that extend through 2017–19 show that sea level has accelerated at a mean rate of 0.0128 ± 0.0064 mm/y² that is statistically significant at the 95% confidence level. This mean rate is higher than determined in earlier studies that considered records less than 75 years in length, analyzed fewer gauge records, or extended records significantly and used non-RLR data.

LITERATURE CITED

- Boon, J.D. and Mitchell, M., 2015. Nonlinear change in sea level observed at North American tide stations. *Journal of Coastal Research*, 31(6), 1295–1305.
- Bromirski, P.D.; Miller, A.J.; Flick, R.E., and Auad, G., 2011. Dynamical suppression of sea level rise along the Pacific Coast of North America: Indications for imminent acceleration. *Journal of Geophysical Research: Oceans*, 116, C7.
- Church, J.A. and White, N.J., 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4), 585–602.
- Church, J.A.; White, N.J.; Aarup, T.; Wilson, W.S.; Woodworth, P.L.; Domingues, C.M.; Hunter, J.R., and Lambeck, K., 2008. Understanding global sea levels: Past, present and future. *Sustainability Science*, 3, 9–22.
- Douglas, B.C., 1992. Global sea level acceleration. Journal of Geophysical Research, 97(C8), 12699–12706.
- Haigh, I.D.; Wahl, T.; Rohling, E.J.; Price, R.M.; Pattiaratchi, C.B.; Calafat, F.M., and Dangendorf, S., 2014. Timescales for detecting a significant acceleration in sea level rise. *Nature Communications*, 5, 3635.

Hogarth, P., 2014. Preliminary analysis of acceleration of sea-level rise through the twentieth century using extended tide gauge data sets. *Journal of Geophysical Research: Oceans*, 119(11), 7645–7659.

- Holgate, S.J., 2007. On the decadal rates of sea level change during the twentieth century. *Geophysical Research Letters*, 34, L01602.
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S., and Pugh, J., 2013. New data systems and products at the permanent service for mean sea level. *Journal of Coastal Research*, 29(3), 493–504.
- Houston, J.R., 2016. Discussion of: Boon, J.D. and Mitchell, M., 2015. Nonlinear change in sea level observed at North American tide stations. *Journal of Coastal Research*, 31(6), 1295–1305; *Journal of Coastal Research*, 32(4), 983–987.
- Houston, J.R. and Dean, R.G., 2013. Effects of sea-level decadal variability on acceleration and trend difference. *Journal of Coastal Research*, 29(5), 1062–1072.
- Houston, J.R. and Dean, R.G., 2011. Sea-level acceleration based on U.S. tide gage and extensions of previous global-gage analysis. *Journal of Coastal Research*, 23(3), 409–417.
- Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) Team, 2018. Mass balance of the Antarctic Ice Sheet from 1992–2017. *Nature*, 558, 219–236.
- IMBIE Team, 2020. Mass balance of the Greenland Ice Sheet from 1992–2018. *Nature*, 579, 233–254.
- Intergovernmental Panel on Climate Change (IPCC), 2001. Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K., and Johnson, C.A. (eds.). Cambridge, United Kingdom, and New York, New York, USA: Cambridge University Press, 881p.
- IPCC, 2019. Summary for policymakers. In: Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Nicolai, M.; Okem, A.; Petzold, J.; Rama, B., and Weyer, N. (eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In press.
- Jevrejeva, S.; Grinsted, A.; Moore, J.C., and S. Holgate, 2006. Nonlinear trends and multiyear cycles in sea level records. *Journal* of *Geophysical Research*, 111(C9), C09012.
- Jevrejeva, S.; Moore, J.C.; Grinsted, A., and Woodworth, P.L., 2008. Recent global sea level acceleration started over 200 years ago? *Geophysical Research Letters*, 35(8), L08715.
- Merrifield, M.A., 2011. A shift in western tropical pacific sea level trends during the 1990s. *Journal of Climate*, 24(15), 4126–4138.
- Olivieri, M. and Spada, G., 2013. Intermittent sea-level acceleration. Global and Planetary Change, 109, 64–72.
- Permanent Service for Mean Sea Level (PSMSL), 2020. Obtaining tide gauge data. http://www.psmsl.org/data/obtaining/
- Ray, O.D. and Douglas, B.C., 2011. Experiments in reconstructing twentieth-century sea levels. *Progress in Oceanography*, 91(4), 496-515.
- Shapoval, A.; Mouël, J.-L.; Courtillot, V., and Shnirman, M., 2020. Influence of very large spatial heterogeneity on estimates of sealevel trends. Applied Mathematics and Computation, 386, 125485.

- Spada, G. and Galassi, G., 2012. New estimates of secular sea level rise from tide gauge data and GIA modelling. *Geophysical International*, 191(3), 1067-1094.
- Sturges, W. and Douglas, B. C., 2011. Wind effects on estimates of sea level rise. Journal of Geophysical Research: Oceans, 116(C6), C06008.
- Sturges, W. and Hong, B.G., 2001. Decadal variability of sea level. In: Douglas, B.C.; Kearney, W.S., and Leatherman, S.P., (eds.), Sea Level Rise, Chapter 7. San Diego, California: Academic Press, 165– 180.
- University of Colorado, 2020. Sea Level Research Group. https:// sealevel.colorado.edu/data/2020rel1-global-mean-sea-levelseasonal-signals-retained
- Watson, P.J., 2017. Acceleration in European mean sea level? A new insight using improved tools. *Journal of Coastal Research*, 33(1), 23–38.

- Watson, P.J., 2016. Acceleration in U.S. mean sea level? A new insight using improved tools. *Journal of Coastal Research*, 32(6), 1247–1261.
- Watson, P.J., 2011. Is there evidence yet of acceleration in mean sea level rise around mainland Australia? *Journal of Coastal Research*, 27(2), 368–377.
- Wenzel, M. and Schröter, J., 2010. Reconstruction of regional mean sea level anomalies from 595 tide gauges using neural networks. *Journal of Geophysical Research*, 115(C8), C08013.
- Woodworth, P.L., 1990. A search for accelerations in records of European mean sea level. *International Journal of Climatology*, 10(2), 129–143.
- Woodworth, P.L.; Menendez, M., and Gehrels W.R., 2011. Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels. *Surveys in Geophysics*, 32(4–5), 603– 618.