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ABSTRACT

New objectively balanced observation-based reconstructions of global and continental energy budgets and their

seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-

first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current

estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24Wm22. The

largest imbalances occur over oceanic regions where the component algorithms operate independent of closure

constraints.Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each

dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in

the component fluxes. To reintroduce energy and water cycle closure information lost in the development of in-

dependent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all

component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget esti-

mates that simultaneously satisfy all energy andwater cycle balance constraints. Globally, 180Wm22 of atmospheric

longwave cooling is balancedby74Wm22 of shortwaveabsorptionand106Wm22 of latent and sensibleheat release.

At the surface, 106Wm22 of downwelling radiation is balancedby turbulentheat transfer towithin a residual heatflux

into the oceans of 0.45Wm22, consistent with recent observations of changes in ocean heat content. Annual mean

energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.

1. Introduction

Spatial and temporal variations in the flows of energy

between the surface, the atmosphere, and space play a

central role in establishing the large-scale atmosphere

and ocean circulation patterns that ultimately drive both

weather and climate (e.g., Hartmann et al. 1984; Lau and

Peng 1987; Slingo and Slingo 1988, 1991; Lee et al. 2001;

Schumacher et al. 2004). The sensitivity of the climate

system to external forcings is therefore governed by the

energy imbalances they induce and the partitioning of

these imbalances between the atmosphere, ocean, and

cryosphere (Trenberth 2009; Trenberth et al. 2014). As a

result, several recently documented biases in climate
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models, such as insufficient low cloud cover in sub-

tropical subsidence regions (Kay et al. 2012), warm sea

surface temperature (SST) biases in the southeast Pa-

cific (Yu and Mechoso 1999; Dai et al. 2003), the pres-

ence of a ubiquitous tropical rainband south of the

equator (Li et al. 2004; Masunaga and L’Ecuyer 2010),

premature onset of deep convection (particularly over

land) (Davis et al. 2003; Dai and Trenberth 2004;

Grabowski et al. 2006), and underestimates of the

Walker circulation response to El Niño (L’Ecuyer and

Stephens 2007; Su and Jiang 2013), are likely connected

to errors in the representation of energy flows in these

models. The need to resolve these biases to improve future

climate predictions motivates the development of accu-

rate observationally based benchmarks of energy flows to

evaluate and refine model physics (Bony et al. 2006).

Characterizing energy exchanges between the surface,

the atmosphere, and space from observations has been the

subject of vigorous research for more than a century

(Abbot and Fowle 1908; Dines 1917). It was not until the

late twentieth century, however, that satellite observations

revolutionized our understanding of Earth’s radiative

balance by providing a unique global perspective on the

spatial distribution of incoming and outgoing radiation at

the top of the atmosphere (TOA). Early satellite studies

demonstrated that Earth was darker and warmer than

previously believed and that there was a stronger gradient

of absorbed solar energy between the tropics and the

midlatitudes (VonderHaar and Suomi 1969;VonderHaar

et al. 1972). Following these initial discoveries, satellite

observations with improved calibration and increased

spatial and temporal resolution have played a central role

in refining reconstructions of Earth’s energy balance (e.g.,

Budyko 1974; Liou 1980; Peixoto and Oort 1992;

Hartmann 1994; Rossow et al. 1995; Kiehl and Trenberth

1997; Zhang et al. 2004; and references therein).

The last decade can be considered a golden era in sat-

ellite Earth observation, especially for observations of di-

rect relevance to Earth’s energy budget. Clouds and the

Earth’s Radiant Energy System (CERES) instruments

aboard the Tropical RainfallMeasuringMission (TRMM),

Terra, and Aqua satellites, for example, have provided

improved observations of the exchange of longwave and

shortwave radiation at the TOA (Wielicki et al. 1996;

Loeb et al. 2001). When coupled with water vapor esti-

mates from the Atmospheric Infrared Sounder (AIRS)

and cloud and aerosol information from the Moderate

Resolution ImagingSpectroradiometer (MODIS),CloudSat,

and the Cloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO), these observations

have also led to significant refinement to estimates of sur-

face radiative fluxes (Stackhouse et al. 2001; L’Ecuyer et al.

2008; Kato et al. 2011). Likewise, the TRMM Microwave

Imager (TMI) and precipitation radar (PR) as well as

the Advanced Microwave Scanning Radiometer for

Earth Observing System (EOS) (AMSR-E) aboard

Aqua have provided new insights into the global distri-

bution of latent heat release in precipitation and surface

turbulent heat fluxes.

At the same time, a growing network of surface-based

measurements has provided substantially better con-

straints on surface radiative and turbulent heat fluxes,

such as the Baseline Surface Radiation Network (BSRN)

(Ohmura et al. 1998) and FLUXNET (ORNL DAAC

2013). Likewise, recent advances in computing power

have led to vast improvements in global atmospheric re-

analyses through both increased resolution and the ability

to assimilate extensive ground-based and satellite obser-

vations (Kalnay et al. 1996; Bosilovich et al. 2006; Onogi

et al. 2007; Dee et al. 2011). Together, these advances

have enabled new reconstructions of energy balance on

global (Lin et al. 2008; Trenberth et al. 2009; Kato et al.

2011; Stephens et al. 2012b; Wild et al. 2013, 2015) and

regional scales (Fasullo andTrenberth 2008a,b; Trenberth

and Fasullo 2013b,c; Brown and Kummerow 2014) from

various combinations of in situ observations, satellite da-

tasets, and reanalyses.

Comparing the results of these complementary stud-

ies, however, reveals that imbalances exist in both the

atmospheric and surface energy budgetswhen independent

estimates of the component fluxes are combined be-

cause choices concerning the manner by which balance

is achieved have resulted in substantial differences in

downwelling longwave and shortwave radiation (DLR

and DSR, respectively) and turbulent heat fluxes. Thus,

while these reconstructions utilize high-quality inputs

and make reasonable arguments for adjusting compo-

nent fluxes based on either assessments against in situ

datasets or satellite product intercomparisons, the lack

of consensus among the resulting energy balance dia-

grams suggests there is room for improvement.

Since its inception, themission of NASA’s Energy and

Water cycle Study (NEWS) has been to bring together

complementary expertise and datasets from distinct

missions to provide a comprehensive view of the water

and energy cycle consequences of climate change (NSIT

2007). This study and its water cycle counterpart (Rodell

et al. 2015) embrace the NEWS paradigm to develop

new estimates of the current state of the water and en-

ergy cycles on global and continental scales using data-

sets from the recent golden age of satellite Earth

observations. Drawing inspiration from the early efforts

of Dines (1917), who combined the best estimates of

several key radiative and nonradiative fluxes available at

the time with carefully thought-out closure arguments to

construct a comprehensive depiction of global energy
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balance, we introduce an objective approach for im-

posing closure constraints on disparate large-scale en-

ergy flux datasets derived from NASA’s latest EOS

satellites. Using well-documented variational methods

(Rodgers 2000; Kalnay 2003), atmospheric and surface

energy and water cycle closure equations are incorpo-

rated as soft constraints, yielding balanced energy bud-

gets on continental scales with modest adjustments to

each of the component fluxes based on rigorous esti-

mates of their uncertainties. The approach has a number

of advantages: 1) it provides a uniform framework for

integrating satellite observations of energy and water

fluxes from disparate sources; 2) it explicitly accounts for

the relative uncertainties in all component fluxes; 3) it

allows energy and water cycle balance constraints to be

applied simultaneously, linked through latent heating;

and 4) it provides quantitative metrics for evaluating

how well balance could be achieved. The method does

not, however, provide direct insights into specific sour-

ces of biases in any particular flux dataset. Furthermore,

as with all methods for reconstructing energy budgets,

the results are sensitive to the specific-input datasets, but

care has been taken to use recent assessments of the

uncertainties in the component fluxes from the literature

to construct error bars that encompass the likely range

of expected values.

The method is used to generate observation-based

reconstructions of the energy budget both globally and

on continental scales and document their seasonal cycles

using several recently developed satellite datasets.

These datasets are then used to assess the degree to

which global and regional energy budgets balance on

annual scales in section 3. An objective optimization

approach is introduced in section 4 and used to generate

closed global and regional energy budgets over the past

decade that satisfy all relevant energy and water cycle

constraints. Beyond accounting for the relative accuracy

of each dataset, the approach simultaneously imposes

energy and water cycle constraints on the system,

providing a powerful tool for adding physical constraints

that cannot be applied to individual datasets. It is argued

that the resulting set of physically consistent energy

budget and water cycle estimates [the latter reported in

Rodell et al. (2015)] and associated error bars provide a

measure of our ability to quantify the global energy and

water cycles using modern satellite datasets.

2. Datasets

The goal of this study is to document observation-based

reconstructions of energy budgets on time and space

scales that begin to capture regional variability without

exhibiting prohibitive sensitivity to measurement error.

The analysis focuses on the decade from 2000 to 2009 to

benefit from the availability of several new datasets de-

veloped during this golden age of Earth-observing satel-

lites. A 10-yr period is adopted to smooth out interannual

variations that may exert a strong influence over shorter

time periods, with the caveat that it also ignores climate

trends that may have occurred during this time. This time

period corresponds to an apparent hiatus in global

warming during which global temperatures remained

relatively constant compared to trends in the previous

two decades (Trenberth and Fasullo 2013a), but changes

in other components of the climate system continued or

accelerated. In particular, it has been documented that

Greenland, Antarctica, and the glaciers along the Gulf of

Alaska have been shedding mass at a total rate of

380km3yr21 (Luthcke et al. 2013). The impact of ne-

glecting such trends on water and energy budgets is dis-

cussed below. Furthermore, owing to data availability at

the time of analysis, some datasets span slightly different

periods (e.g., 1998–2007), but an analysis of the magni-

tude of year-to-year variations in the component fluxes

(not shown) reveals that the impact of these differences

on the results is smaller than the uncertainties in each

dataset.

For the reconstructions generated here to serve as a

basis for future comparisons, the analysis is restricted to

datasets for which justifiable error bars are available.

Uncertainty estimates not only help establish the state

of knowledge but they also supply critical input to the

objective approach for introducing balance constraints

introduced in section 4. However, assessing uncertainty

poses a significant challenge for global satellite datasets

because of the limited number of validation sites and the

very different fields of view, sample volumes, and sen-

sitivities of in situ instrumentation. The datasets listed in

Table 1 were chosen because they span the period of

interest and are sufficiently mature so that defensible

uncertainty estimates have been published that account

for both random and structural errors through compar-

isons against independent datasets, statistical validation

against in situ observations, and rigorous sensitivity stud-

ies. Nevertheless, some decisions were made in compiling

the final energy budgets presented here. When multiple

estimates of a particular flux were available with no de-

finitive method for determining relative accuracy, data-

sets were averaged to generate the final flux estimate. For

other fluxes, a particular dataset was chosen based on its

acceptance in the community as the observational stan-

dard. As this work was conducted under the auspices of

NEWS, datasets provided by members of the NEWS

team appear prominently in the analysis. NEWS datasets

are widely available, have been the subject of compre-

hensive uncertainty assessment, undergo regular ongoing
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refinement, and facilitate consistency through common

time and space grids. It is acknowledged that alternative

datasets of similar quality exist, but at present it cannot

be definitively demonstrated that these should be pre-

ferred over those chosen here. This does not mean that

the chosen datasets have been anointed as the best nor

should it be construed as a dismissal of others. To the

contrary, considerable effort has been made to ensure

that the associated error estimates accurately reflect the

quality of the range of estimates that may be obtained

from all viable alternatives. To these ends, the error

estimates adopted below combine findings from several

independent assessments that are largely decoupled

from the specific data products used, instead repre-

senting the characteristics of each class of flux observa-

tions as a whole. Brief descriptions of each dataset used

in this analysis are provided below, but the reader is

directed to the cited literature for additional detail.

a. Radiative fluxes

The global average TOA solar insolation is taken to be

340.2 6 0.1Wm22 based on the recent total solar irradi-

ancemeasurements from the Solar Radiation and Climate

Experiment (SORCE) (Kopp and Lean 2011). Satellite

measurements of other TOA and surface radiative

fluxes derive from threeNASAglobal radiation products:

the CERES outgoing broadband flux product (Wielicki

et al. 1996), the International Satellite CloudClimatology

Project Flux Data (ISCCP-FD) (Zhang et al. 2004), and

theGlobalEnergyandWaterCycleExperiment (GEWEX)

Surface Radiation Budget (SRB) dataset (Gupta et al.

1999; Stackhouse et al. 2001). The ISCCP and SRB

products calculate TOA and surface radiative fluxes

based on satellite observations of the spatial distribution

of clouds, aerosols, surface albedo, skin temperature,

and emissivity constrainedwith atmospheric temperature

and humidity profiles from the Television and Infrared

Observation Satellite (TIROS) Operational Vertical

Sounder (TOVS) and global atmospheric reanalyses,

respectively. Each are compared against more direct

measurements of broadband radiative fluxes at the TOA

from CERES. A key property of these datasets is that

the most relevant variables defining the propagation of

radiation fluxes through the atmosphere, including cloud

and aerosol optical properties, are obtained from multi-

channel narrowband satellite measurements. For the an-

alyses that follow we adopt mean values of all TOA and

surface radiative fluxes obtained by averaging ISCCP-FD

and SRB datasets as the benchmark radiative fluxes. Note

that the versions of these datasets used here employ a

slightly larger value of the solar constant (342Wm22) than

the recent update provided by SORCE. This affects all

shortwave fluxes, but the impacts are an order of magni-

tude smaller than the anticipated uncertainties in these

fluxes.

Although they launched toward the end of the decade

of interest for this study, the ability of CloudSat and

CALIPSO to explicitly detect multilayered cloud sys-

tems and define cloud base height inmost clouds (except

those residing in the boundary layer) can be used to refine

the error budgets of the ISCCP-FD and SRB datasets

(Stephens et al. 2008;Winker et al. 2010;RossowandZhang

2010). The CloudSat 2B-FLXHR-lidar algorithm, for ex-

ample, blends information from CloudSat, CALIPSO,

TABLE 1. Data sources and associated documentation.

Parameter Dataset Relevant satellite inputs References

Radiative fluxes SRB CERES, AVHRR Gupta et al. (1999)

ISCCP-FD AVHRR Zhang et al. (2004)

2B-FLXHR-lidar CloudSat, CALIPSO Henderson et al. (2013)

C3M MODIS, AMSR-E, CERES,

CloudSat, CALIPSO, MODIS

Kato et al. (2010); Kato et al. (2011)

Ocean turbulent heat fluxes SeaFlux SSM/I Curry et al. (2004); Clayson et al. (2015,

manuscript submitted to Int. J.

Climatol.)

Land turbulent heat fluxes Princeton ET AIRS, CERES, MODIS, AVHRR Vinukollu et al. (2011)

MERRA Numerous Rienecker et al. (2011); Bosilovich et al.

(2011)

GLDAS SSM/I, SSMIS, GOES-IR, TOVS,

AIRS, TRMM, MODIS,

AVHRR

Rodell et al. (2004b)

Atmospheric latent heating GPCP v.2.2 SSM/I, SSMIS, GOES-IR, TOVS,

AIRS

Adler et al. (2003); Huffman et al. (2009)
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MODIS, and AMSR-E to generate profiles of atmo-

spheric radiative fluxes at high vertical and spatial res-

olutions (L’Ecuyer et al. 2008; Henderson et al. 2013).

The algorithm supplements vertical distributions of

cloud and precipitation water content and effective radii

from CloudSat’s 94-GHz Cloud Profiling Radar (CPR)

with characteristics of undetected thin cirrus and stratus

clouds derived from CALIPSO and MODIS observa-

tions. Vertical profiles of aerosol type and optical depth

are constrained using CALIPSO and surface albedo.

Surface albedo and emissivity are assigned by coupling

the International Geosphere–Biosphere Programme

(IGBP) global land surface classification with estimates

of snow and sea ice extent from the passive microwave-

derived near-real-time equal-area scalable Earth grid

(EASE-Grid) daily global ice concentration and snow

extent (NISE) dataset (Nolin et al. 1998). These cloud,

aerosol, and surface properties are combined with an-

cillary temperature and humidity profiles from the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) operational analyses and used to initialize a

two-stream doubling-adding radiative transfer model to

derive radiative flux profiles for each 1.4km 3 1.8km

CloudSat footprint at the 240-m vertical resolution of the

CPR. Additional details concerning the approach and

assessments of relevant uncertainties can be found in

L’Ecuyer et al. (2008) and Henderson et al. (2013).

This study alsomakes use of the independentCALIPSO,

CloudSat, CERES, and MODIS (CCCM) merged dataset

data product that blends CERES and MODIS observa-

tions with cloud-top and -base height, liquid and ice water

contents, extinction coefficients, and aerosol properties

derived from merged CloudSat–CALIPSO observa-

tions. Cloud and aerosol properties are extracted from

CALIPSO (Ed3 VFM, 5-km cloud profile, and 5-km

aerosol layer) and CloudSat (Release 4 CLDCLASS and

CWC-RO) products and averaged over the 20-kmCERES

footprint. The dataset itself, however,maintains the spatial

resolution of original CALIPSO and CloudSat products.

The process of mergingCALIPSO- andCloudSat-derived

cloud vertical profiles is explained in Kato et al. (2010),

while the computation of irradiance profiles is described

in Kato et al. (2011). CERES TOA irradiances and ir-

radiance profiles computed using CALIPSO-,CloudSat-,

and MODIS-derived cloud and aerosol properties are

also included.

Uncertainties in radiative fluxes that account for

sources of both random and systematic error are estab-

lished through three independent methods: comparisons

against surface radiation measurements; differences

between the independently derived SRB, ISCCP-FD,

2B-FLXHR-lidar, and C3M datasets; and sensitivity

studies. TOA flux estimates from ISCCP-FD and

CERES are sensitive to changes in observing system and

diurnal sampling, respectively, leading to uncertainties in

continent-scalemonthlymeanTOAradiative fluxes of up

to 5Wm22 (Mayer and Haimberger 2012; Wild et al.

2013; Loeb et al. 2014). Loeb et al. (2009), for example,

state that after removing global biases, uncertainties of up

to 4.2Wm22 (2s) may remain in large-scale long-time

mean net outgoing radiation based on extensive sensi-

tivity studies. They further note that in the absence of bias

correction, imbalances in CERES global annual mean

net outgoing radiation are 6.5Wm22. Uncertainties of

this magnitude significantly impact analysis of trends and

variability but are not prohibitive for documenting the

mean state.

At the surface, however, comparisons against theBSRN

suggest that regional monthly mean errors in the current

ISCCP-FD and SRB products can be much larger,

approaching 10Wm22 on the continental and ocean-

basin scales examined here (Zhang et al. 2004). While

random errors are significantly reduced when data are

averaged to the large time and space scales addressed

here, biases can result from systematic errors in the

forward models and associated assumptions used in the

component algorithms. Such errors, known as structural

errors, impact all satellite datasets because of the com-

putational costs of processing large volumes of data and

the underconstrained nature of remote sensing prob-

lems. Since it is not generally possible to observe all of

the parameters required to define complete physical

models that map observed radiances onto the geo-

physical parameters of interest, less sophisticated for-

ward models must be used and a subset of influence

parameters must be specified that cannot be explicitly

retrieved owing to the limited information content of

the measurements (Rodgers 2000). The magnitude of

the errors that results from these simplifications is often

scene dependent, leading to regionally and seasonally

varying biases that can lead to residual biases even upon

aggregation to much larger scales (e.g., Berg et al. 2006).

Extensive previous research has documented the po-

tential sources of structural errors in surface radiative flux

estimates. Sensitivity studies in which all key algorithm

inputs are perturbed by amounts consistent with their

intrinsic uncertainties and reprocessing up to a year of

flux calculations (billions of individual pixels) suggest

that the dominant sources of structural errors in satellite-

based estimates of surface shortwave fluxes are uncer-

tainties in assumed cloud effective radii and aerosol

optical properties. Uncertainties in surface air and skin

temperatures and lower-tropospheric water vapor are

found to dominate biases in surface longwave fluxes

(L’Ecuyer and Stephens 2003; Zhang et al. 2004, 2006,

2007, 2010). The use of one-dimensional plane-parallel

1 NOVEMBER 2015 L ’ ECUYER ET AL . 8323



radiative transfer calculations to generate fluxes at the

CloudSat resolution has also been shown to lead to sys-

tematic uncertainties in inhomogeneous cloud scenes

(Barker et al. 1998). As a result the ISSCP-FD algorithm

employs a correction for the effects of subgrid in-

homogeneity based on the parameterization of Cairns

et al. (2000). The plane-parallel approximation has,

however, been shown to be more accurate for deriving

domain-averaged broadband radiative fluxes than for

narrowband radiances on smaller spatial scales (Benner

et al. 2001; Ham et al. 2014).

Since the radiation datasets cover different spatial

resolutions, use inputs from distinct sensors, adopt dif-

ferent background assumptions, employ different radia-

tive transfer solvers, and have different diurnal sampling

characteristics, the range of estimates from these prod-

ucts can be expected to provide a reasonable approxi-

mation of the aggregate effects of structural errors in each

product. For example, each dataset can be expected to

exhibit a unique sensitivity to three-dimensional effects

owing to their distinct spatial resolutions, and any sys-

tematic errors that result from these effects will be

manifested in the range of large-scale flux estimates de-

rived from these products. To generate uncertainty esti-

mates specific to the regions and time scales examined

here, the range of flux estimates from the four datasets

described above was assessed. In nearly all cases, the

resulting uncertainty estimates capture the magnitude of

the structural errors implied by previously published

sensitivity studies with two exceptions. The standard de-

viations of regional DLR between the four datasets are

slightly smaller than previous estimates of the errors that

could result from uncertainties in lower-tropospheric

humidity and, to a lesser extent, cloud liquid water

path. Likewise, standard deviations of DSR were smaller

than those estimated based on sensitivities to errors in

assumed cloud liquid water path and effective radii.

Uncertainties inDLR andDSRwere therefore increased

to represent possible regime-dependent errors resulting

from these algorithm assumptions. On regional scales

(see Table 2), fractional uncertainties are consistent with

the RMS differences between satellite-based estimates

and ground-based observations reported by Kato et al.

(2012) and Kato et al. (2013). This suggests that the ag-

gregate effects of structural errors in radiative flux

products owing to the plane-parallel approximation or

other algorithmic assumptions do not result in significant

biases on the continental andmonthly scales of interest to

this study.

b. Oceanic turbulent heat fluxes

Turbulent heat fluxes (latent heat LE and sensible

heat SH) over the ocean derive primarily from SeaFlux

version 1.0. SeaFlux (Curry et al. 2004; Clayson et al. 2015,

manuscript submitted to Int. J. Climatol.) estimates tur-

bulent heat fluxes from the ocean surface by applying bulk

formulas to atmospheric temperature and humidity pro-

vided by Special Sensor Microwave Imager (SSM/I) re-

trievals using a newly developed neural net algorithm

(Roberts et al. 2010). A modified sea surface temperature

dataset that specifically accounts for diurnal warming

(Clayson and Bogdanoff 2013) is included to reduce both

mean biases relative to in situ data and systematic errors at

extremely low and high humidities. Air temperature re-

trievals using this method have shown the greatest in-

crease in accuracy compared to other products, with biases

now under 0.258C on the monthly scales examined here

across the spectrum of air–sea temperature differences.

Winds are derived from the Cross-Calibrated Multi-

Platform (CCMP) level-2.5 gridded swath product using a

novel interpolation method based on temporal evolution

in reanalyses [in this case the Modern-Era Retrospective

Analysis for Research and Applications (MERRA)]. This

model-based interpolation uses the time tendencies from a

high-resolution model analysis but is driven through the

satellite observations in a smooth manner. The resulting

SeaFlux dataset is produced at a higher 0.258 spatial and
3-hourly temporal resolution than other satellite-based

turbulent heat flux products. The version of the SeaFlux

product used here covers the 1998–2007 time period and

integrates the Colorado State University SSM/I calibrated

brightness temperature dataset (C. Kummerow 2011,

personal communication).

Previous efforts to quantify the uncertainties in satellite

estimates of air–sea fluxes suggest that the dominant

sources of biases are likely retrievals of near-surface air

temperature and humidity, sampling biases, and the pa-

rameterization of exchange coefficients in bulk formulas

(e.g., Gulev et al. 2007a,b; Clayson et al. 2015, manuscript

submitted to Int. J. Climatol; and references therein).

Despite the effort taken to calibrate the fluxes against

in situ observations and correct for diurnal sampling ef-

fects and interpolation errors, systematic errors may re-

main in ocean turbulent heat flux estimates on larger time

and space scales that can influence subsequent applications

(e.g., Trenberth et al. 2001; Josey et al. 2014). Brunke et al.

(2011), for example, compared ocean turbulent heat fluxes

from11 different global flux datasets to in situ observations

from 12 cruises and found biases as large as 6 and

20Wm22 in SH and LE fluxes, respectively. The un-

certainties in SeaFlux fluxes adopted here are adapted

based on the error propagation analyses reported in

(Roberts et al. 2010; Clayson et al. 2015, manuscript sub-

mitted to Int. J. Climatol.). On global scales, LE and SH

errors are found to be 14 and 6Wm22, respectively, while

those for individual basins are ;10% and ;25%.
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c. Terrestrial turbulent heat fluxes

The terrestrial counterparts to the ocean turbulent heat

fluxes [or evapotranspiration (ET), for consistency with

the companion water cycle study] are much more difficult

to estimate because ET is highly variable in space and

time, and ground-based observations (weighing lysimeters

and eddy covariance measurements) are sparse and may

not be representative of the continental scales targeted

in this study. Satellite retrieval algorithms, on the other

hand, offer more desirable spatial sampling, but their ac-

curacy is severely limited by the assumptions required and

the sparseness of in situ observations available for cali-

bration and validation. Physical and empirical models of

land surface processes offer a third alternative, but their

accuracy is again limited by the quality of the input data

and simplifications inherent to numerical models (Rodell

et al. 2004a). From these considerations and the lack of a

clear consensus regarding superiority of any particular

approach, the estimates of terrestrial turbulent heat fluxes

and their uncertainties used here were obtained from the

average and standard deviation of three independent

model- and observation-based sources.

1) PRINCETON SATELLITE-BASED EVAPORATION

The Princeton terrestrial ET algorithm uses the

Penman–Monteith approach (Monteith 1965) with all

model inputs and forcings, with the exception of wind

and surface pressure, derived from satellite remote

sensing. Surface resistance (the resistance of vapor flow

through the transpiring crop and evaporating soil sur-

face) is adjusted and ecophysiological constraints are

applied to account for changing environmental factors.

Evaporation and sublimation over snow-covered re-

gions are calculated using a modified Penman equation.

Instantaneous latent and sensible heat fluxes computed

at the time of satellite overpass are linearly scaled to the

equivalent daily evapotranspiration using the computed

evaporative fraction and the daytime net radiation.

Nighttime evaporation is modeled as a constant fraction

(10%) of daytime evaporation. Interception losses

(evaporation from the vegetation canopy) are computed

using a simple water budget model. More detail can be

found in Vinukollu et al. (2011). Both input meteorology

and latent and sensible heat outputs have been exten-

sively evaluated against eddy covariance tower data

across the United States at the site scale on a monthly

mean basis. Multiyear means are then compared against

climatological evapotranspiration estimates over 26 ma-

jor river basins, and zonal means are evaluated on an

annual basis. Good correlations are found with in situ

data, and the dataset is found to capture both seasonal

cycles and major drought events.

2) MERRA

The NASA/GMAO MERRA reanalysis assimilates

conventional in situ observations, satellite radiances,

and several remotely sensed retrieved datasets over the

TABLE 2. Contributions of individual continents and ocean basins to the annual mean energy flux into Earth’s surface. Fluxes are

reported in petawatts (1015W) so that the values reported for individual regions reflect the partitioning of the global total (last row)

between them (Fasullo and Trenberth 2008a). For conversion purposes, 1Wm22 globally equates to 0.511 PW, while for global land

1Wm22 5 0.147 PW and global oceans 1Wm22 5 0.364 PW. The areas (in 1012 m2) of all continents and basins as defined in Fig. 2 are

provided for converting fluxes in individual regions. The full names of each term are provided in Table 3.

Map Continent/basin Area P LE DLR DSR ULW USW SH

01 North America 24.03 1.35 6 0.07 0.82 6 0.07 6.95 6 0.13 3.76 6 0.17 8.27 6 0.13 0.63 6 0.09 0.66 6 0.17

02 South America 17.73 2.31 6 0.11 1.40 6 0.08 6.66 6 0.10 3.68 6 0.15 7.71 6 0.07 0.46 6 0.06 0.96 6 0.13

03 Eurasia 53.23 3.06 6 0.18 1.77 6 0.28 15.9 6 0.44 8.70 6 0.50 19.5 6 0.73 1.79 6 0.12 1.86 6 0.38

04 Africa 29.90 1.66 6 0.08 1.32 6 0.11 10.9 6 0.22 7.10 6 0.31 13.8 6 0.19 1.68 6 0.06 1.87 6 0.21

05 Australia 7.558 0.31 6 0.02 0.24 6 0.04 2.70 6 0.07 1.77 6 0.09 3.50 6 0.11 0.34 6 0.05 0.60 6 0.06

06 Island continent 1.484 0.29 6 0.02 0.13 6 0.03 0.53 6 0.02 0.25 6 0.02 0.60 6 0.03 0.02 6 0.01 0.05 6 0.02

07 Antarctica 12.70 0.18 6 0.05 0.01 6 0.01 1.76 6 0.22 1.62 6 0.13 2.18 6 0.09 1.23 6 0.13 20.2 6 0.09

08 Arctic Ocean 10.15 0.21 6 0.11 0.10 6 0.02 2.32 6 0.07 0.99 6 0.04 2.61 6 0.03 0.48 6 0.09 0.07 6 0.03

09 Caribbean Sea 4.345 0.36 6 0.04 0.55 6 0.05 1.76 6 0.03 1.06 6 0.03 1.99 6 0.01 0.05 6 0.01 0.05 6 0.02

10 Mediterranean Sea 2.602 0.12 6 0.02 0.29 6 0.04 0.90 6 0.02 0.56 6 0.03 1.09 6 0.01 0.03 6 0.01 0.06 6 0.02

11 Black Sea 0.470 0.03 6 0.01 0.03 6 0.01 0.15 6 0.01 0.08 6 0.01 0.18 6 0.01 0.00 6 0.01 0.01 6 0.01

12 North Pacific 81.77 9.02 6 0.74 7.76 6 0.69 31.3 6 0.51 16.7 6 0.47 35.1 6 0.31 0.97 6 0.09 1.22 6 0.29

13 North Atlantic 43.38 3.54 6 0.38 4.06 6 0.33 15.6 6 0.23 8.12 6 0.27 17.7 6 0.17 0.51 6 0.04 0.80 6 0.18

14 Indian Ocean 75.37 6.29 6 0.65 7.20 6 0.69 27.1 6 0.38 14.5 6 0.40 30.6 6 0.23 0.94 6 0.07 1.31 6 0.31

15 South Pacific 99.93 8.13 6 0.81 8.88 6 0.76 35.6 6 0.55 19.3 6 0.36 40.4 6 0.33 1.35 6 0.09 1.64 6 0.37

16 South Atlantic 46.51 2.83 6 0.37 3.58 6 0.28 15.7 6 0.18 8.35 6 0.28 17.8 6 0.14 0.69 6 0.08 0.81 6 0.18

— Continents 146.6 9.17 6 0.51 5.69 6 0.57 45.4 6 1.16 26.8 6 1.34 55.6 6 1.30 6.16 6 0.50 5.71 6 1.03

— Oceans 364.5 30.5 6 3.09 32.4 6 2.83 130. 6 1.93 69.8 6 1.85 147. 6 1.20 5.03 6 0.44 5.96 6 1.36

— Global 511.2 39.7 6 3.59 38.1 6 3.42 176. 6 3.09 96.6 6 3.18 203. 6 2.50 11.1 6 0.93 11.6 6 2.39
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duration of the Earth-observing satellite era (1979–

present) (Rienecker et al. 2008, 2011). MERRA water

and energy budget data are reported hourly on a nom-

inal 0.58 3 0.678 grid, taking special care to report all

relevant budget terms so that closure can be achieved.

Like all reanalyses, analyzed perturbations of the model

state variables exert significant influence on the physics

budgets (Roads et al. 2002), which leads to imbalances in

the physical terms of the budget. In MERRA, this in-

fluence is computed from the data assimilation and

provided as a tendency term (called the analysis in-

crement) in the budget equation that is used here to

correct turbulent heat fluxes using regression equations

based on Bosilovich and Schubert (2001). The quality of

the MERRA global water and energy budgets is dis-

cussed in detail in Bosilovich et al. (2011). Trenberth

et al. (2011) caution that the quality of the MERRA

reanalysis changes over time and, specifically, that the

MERRA ET exhibits large fluctuations associated with

observing system changes, although these are likely to

be more critical for trend analyses.

3) GLDAS

TheGlobal LandDataAssimilation System (GLDAS)

Rodell et al. (2004b) is a quasi-operational im-

plementation of the land information system software

(Kumar et al. 2006) that generates estimates of soil

moisture, temperature, evapotranspiration, and runoff

(among other parameters) by integrating satellite- and

ground-based observational data products within a suite

of land surface models (LSMs). The GLDAS ET esti-

mates used here derive from the mean and standard

deviation of 1.08-resolution output from a four-member

ensemble that included the Noah (Chen et al. 1996; Ek

et al. 2003; Koren et al. 1999), Community Land Model

(CLM) version 2 (Bonan 1998), Variable Infiltration

Capacity (VIC) (Liang et al. 1994), and Mosaic (Koster

and Suarez 1996) LSMs. Each model was forced with a

combination of meteorological fields (air temperature,

humidity, wind speed, and surface pressure) from the

National Centers for Environmental Prediction (NCEP)

Global Data Assimilation System product, 3-hourly

precipitation fields from a downscaled version of the

Global Precipitation Climatology Project (GPCP) one-

degree daily (1DD) product version 1.1 (Huffman et al.

2001), and downward shortwave and longwave radiation

fields from the Air Force Weather Agency (AFWA)

cloud analyses using the schemes of Shapiro (1987), Idso

(1981), and Wachtmann (1975). Land cover data from

the University of Maryland (Hansen et al. 2000), soils

data from Reynolds et al. (2000), and the GTOPO30

digital elevation model were used to parameterize the

land surface in all models. The GLDAS simulations

were spun up from 1979, and multiyear means were

computed for each month by averaging the four models

over the period 1998–2008. Inland water bodies (e.g., the

Great Lakes) and ice sheets (Greenland andAntarctica)

not modeled by GLDAS were filled with MERRA data

in order to conform to the continental delineation de-

fined for this study.

The resulting standard deviations in annual mean ET

fluxes on continental scales are among the largest of any

class of fluxes in this study, ranging from 10% to 20%.

These results are consistent with the spread in multiyear

global mean land ET estimates between the models ex-

amined inMueller et al. (2011) but somewhat smaller than

those reported in Jimenez et al. (2011). The latter reports

ranges of up to 40% attributed to differences in method-

ology and the choice of both formulation and forcing data-

sets, although their estimates are based on the maximum

and minimum estimates from a larger number of ET data-

sets as opposed to the standard deviations reported here.

Jimenez et al. (2011) further note that, like the pre-

cipitation datasets described below, the magnitude of the

absolute differences between ET estimates is proportional

to the mean magnitude of the ET flux itself, and thus re-

gions characterized by higher evaporation contribute more

to the overall uncertainty than drier regions.

d. Atmospheric latent heat release

Global precipitation observations offer an independent

constraint on nonradiative heat transfer from the surface

to the atmosphere and provide an additional pathway for

coupling the energy and water cycles in the optimization

procedure described below. While detailed accounting of

specific microphysical processes is required for deriving

vertical profiles of latent heating, the total condensate re-

moved from the atmosphere in the form of precipitation

provides a tight constraint on the column-integrated latent

heat release on the large time and space scales considered

here (Tao et al. 1993). The GPCP monthly satellite gauge

precipitation analysis (Adler et al. 2003; Huffman et al.

2009), version 2.2, is adopted as the exclusive dataset to

derive atmospheric latent heating in this study.

The multisatellite merged GPCP dataset provides

global, monthly estimates of surface precipitation at 2.58
resolution from 1979 to present though this study made

use of the period January 2001 to December 2010, the

most recent 10-yr period available at the time the anal-

ysis began. The core monthly GPCP merged product

employs precipitation estimates from the 0600 and 1800LT

low-orbit satellite SSM/I and Special Sensor Microwave

Imager/ Sounder (SSMIS) microwave data to perform a

monthly, regional calibration of geosynchronous-orbit sat-

ellite infrared (IR) data in the latitude band 408N–408S.
At higher latitudes the SSM/I and SSMIS microwave
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estimates are combined with estimates based on TOVS or

AIRS. A bias adjustment of satellite estimates using gauges

over land is conducted to mitigate reduced sensitivity of

passive microwave observations over more emissive land

surfaces. The absolutemagnitudes are, therefore, considered

reliable and interannual changes are robust. Because of the

inhomogeneous nature of the satellite information included

in the dataset and the inclusion of information from

somewhat lower-quality microwave sensors/algorithms

to improve temporal coverage, trends and other small

signals should be interpreted cautiously.

The monthly GPCP dataset includes fields of random

error estimates, which were used to develop 10-yr clima-

tological errors for this analysis. These error estimates are

consistent with the uncertainty estimates derived from the

intercomparison of several satellite rainfall datasets by

Adler et al. (2012). Other studies comparing independent

precipitation estimates from active and passive sensors

support the assertion that structural errors due to sensi-

tivity to light rain and frozen precipitation, algorithm as-

sumptions, and sampling are not likely to exceed these

estimates on the scales of interest to this study (Berg et al.

2006, 2010; Behrangi et al. 2014). Precipitation fromheavy

events and in mountainous areas may, however, be un-

derestimated, although GPCP version 2.2 is improved in

this regard over previous versions (Adler et al. 2012).

e. Additional constraints

This study also indirectly leverages a number of addi-

tional datasets related to components of the water cycle.

New estimates of continental runoff Q from a combina-

tion of near-coast gauging stations and modeling (Clark

et al. 2015), total precipitable water vapor from AIRS

(Susskind et al. 2011), atmospheric convergence C from

MERRA and two water vapor transport datasets (Liu

et al. 2006; Hilburn 2009), and estimated changes in ter-

restrial water storage dS from the Gravity Recovery and

Climate Experiment (GRACE) (Swenson and Wahr

2002; Landerer and Swenson 2012). Since these quan-

tities enter the analysis peripherally through the physical

coupling of the energy and water cycles introduced by

the optimization approach described in section 4, they

are not discussed in detail here. The interested reader is

directed to the companion study by Rodell et al. (2015)

for a more complete discussion of the methodologies

and uncertainties in these datasets.

3. The observed global energy budget at the start of
the twenty-first century

The unadjusted annual mean global energy budget for

the first decade of the twenty-first century obtained us-

ing the datasets described above is presented in Fig. 1.

TOA radiative fluxes are consistent with those reported

in other recent efforts to document the global energy

budget. Solar insolation of 340Wm22 is balanced by

102Wm22 of outgoing shortwave radiation (OSR) and

238Wm22 of outgoing longwave radiation (OLR)

yielding a planetary albedo of 0.3 6 0.012 and a global

emitting temperature of 254.5 6 0.5K. For historical

perspective, these values agree very well with the early

estimates from Nimbus-3 observations reported more

than four decades ago byVonderHaar et al. (1972) (0.29

and 254K), though the present estimates are likely

considerably more precise.

Energy fluxes between the atmosphere and surface,

on the other hand, differ from those reported in other

recent global energy budget reconstructions since no

surface or atmospheric energy balance constraints have

been applied. Notably, DLR and DSR are 11 and

7Wm22 higher than those reported by Trenberth et al.

(2009), while latent heating is 13Wm22 lower than that

reported by Stephens et al. (2012b) and 10Wm22 lower

than in Wild et al. (2013). Figure 1 indicates that our

current best estimates of downwelling radiation at the

surface and atmospheric radiative flux divergence ex-

ceed turbulent heat transfer from the surface to the at-

mosphere by 16 and 12Wm22, respectively, on the

annual average. Comparison of energy budgets derived

using all possible combinations of the alternative data-

sets listed above (not shown) suggest that these imbal-

ances are not unique to the specific choice of datasets

adopted here. Global annual mean surface energy im-

balances, for example, range from 13 to 24Wm22 for the

range of datasets examined here, reflecting uncertainties

in the component flux estimates.

As noted above, extensive research has been con-

ducted to assess potential sources of structural error that

may be responsible for biases in satellite-based esti-

mates of each of the fluxes depicted in Fig. 1. Uncer-

tainty in atmospheric and cloud properties can have

significant impacts on computed downwelling fluxes at

the surface that can lead to biases of up to 4 and 7Wm22

in DSR andDLR, respectively (Kato et al. 2013) (within

the error bars reported on Fig. 1). Similarly, the recent

studies of Adler et al. (2012) and Behrangi et al. (2014)

suggest that biases in the latest global precipitation da-

tasets may be as large as 9% (or 7Wm22), consistent

with earlier studies that indicated that systematic errors

of this magnitude may result from regime-dependent

variations in liquid water path thresholds for identifying

rainfall, raindrop size distributions, the partitioning of

cloud and rainwater, and column-integratedwater vapor

(Berg et al. 2002, 2006).

Likewise, Brunke et al. (2011) and Clayson et al.

(2015, manuscript submitted to Int. J. Climatol.) note
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that the bulk formulas at the root of the SeaFlux ocean

turbulent heat flux estimates are sensitive to the choice

of exchange coefficients, errors in satellite retrievals,

and the interpolationmethodology.While care has been

taken to calibrate the SeaFlux algorithm against in situ

observations, systematic errors may be as large as 6 and

14Wm22 in sensible and latent heat fluxes, respectively,

owing primarily to uncertainty in satellite retrievals of

near-surface air temperature and humidity (Brunke

et al. 2011; Clayson and Bogdanoff 2013; Clayson et al.

2015, manuscript submitted to Int. J. Climatol.). In ad-

dition, the intercomparisons of observational estimates

of evaporative and sensible heat fluxes over land by

Jimenez et al. (2011) suggest structural biases between

datasets that vary systematically with surface type and

season, potentially leading to even larger biases on the

monthly and regional scales examined below.

Continental and basin scales

Given the importance of the partitioning of energy

between the atmosphere and surface and the fact that

the largest energy imbalances are found at the surface, it

is important to seek the source of these imbalances. A

summary of the contributions of individual continents

and ocean basins to the global mean surface energy

balance is presented in Fig. 2. Surface radiative fluxes

have been combined into a net surface radiative flux for

brevity (FNET 5DLR1DSR2ULW2USW). Esti-

mated uncertainties in each of these parameters, ex-

pressed as a 1s deviation about the mean value, are

presented in Fig. 3 for comparison.

Surprisingly, while satellite observations generally

have higher information contents over the oceans, these

regions tend to exhibit the largest energy imbalances.

Uncertainties in net radiation into the oceans, for ex-

ample, are ;10Wm22 owing, in part, to much smaller

variability of dark ocean albedo and the smaller diurnal

cycle of ocean temperatures relative to many land re-

gions. Uncertainties in latent heating estimates tend to

be larger over oceans than over land because of larger

evaporation, but this is at least partially offset by much

smaller uncertainties in ocean sensible heat transfer.

When combined, this results in smaller flux uncertainties

over ocean basins than over land, yet the energy im-

balances in Fig. 2 are clearly larger over oceans than

over land.

FIG. 1. The observed annualmean global energy budget of Earth over the period 2000–09 (fluxes inWm22). Note

that each flux value corresponds to the aggregate from all surfaces around the globe. Longwave and shortwave

fluxes are plotted over land and ocean regions, respectively, merely for convenience. The small fraction ofDLR that

is reflected by Earth’s surface has been absorbed into the ULW.
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FIG. 2. Annualmean surface energy fluxes for each of the seven continents and nine ocean basins

adopted in this study. (a) Net downwelling surface radiation (downwelling minus upwelling LW1
SW radiation). (b),(c) Latent and sensible turbulent heat fluxes. (d) The resulting net surface en-

ergy imbalances defined as the difference between radiation and the two turbulent heat fluxes.

Corresponding global (GLB), continental (LND), and ocean-basin (SEA) means are summarized

on the right side of the figure (in Wm22). The numerical labels on each continent and basin in

(d) reference the identifiers used in Tables 2 and 4.
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The apparent contradiction between Figs. 2 and 3may

be partially explained by differences in the way turbu-

lent heat fluxes are derived over land relative to over

oceans. Satellite-based land flux algorithms like the

Princeton ET approach directly incorporate closure

constraints and ingest surface radiative fluxes, while the

SeaFlux turbulent heat fluxes are derived independent

of surface radiation with the exception of a diurnal cycle

correction based on diurnal variations in solar in-

solation. Thus, despite the large structural biases that

FIG. 3. Estimated uncertainties in observed annual mean surface (a) radiative fluxes,

(b) sensible heat fluxes, and (c) latent heat fluxes for all major continents and ocean basins.

(d) The uncertainty in net surface–atmosphere energy exchange is computed assuming that the

errors in the component fluxes are independent [i.e., d(x1 1 x2 1 � � � 1 xN)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

i51dx
2
i

q
].
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can be introduced in land ET datasets from specific

choices of formation and forcing datasets (Jimenez et al.

2011), closure is more readily achieved provided that

consistent datasets are used. Imbalances between down-

welling radiation and latent heating over ocean basins

are, therefore, the primary driver of global surface energy

imbalances; the integrated surface energy budget over

land produces an imbalance of just 26Wm22, while in-

tegrating all ocean basins results in an imbalance of

25Wm22.

By comparison, analysis of data collected by the Argo

array since 2005 suggests that ocean heat content (OHC)

has changed by ;0.6 6 0.4Wm22 (Willis et al. 2009;

Lyman et al. 2010). Despite the large fractional un-

certainties in these estimates owing to challenges in

sampling the Arctic, marginal seas, and depths below

2000m (Trenberth et al. 2014), they constrain the net heat

absorbed into the oceans to be at least an order of mag-

nitude smaller than the imbalances implied by combining

the component fluxes. Also, with the exception of the

Antarctic circumpolar current that is not responsible

for significant heat transport, all of the major wind-

driven gyres lie entirely within individual basins, so it is

unlikely that heat transport between basins by deep

ocean circulations can account for such large imbal-

ances. Furthermore, achieving balance through heat

transport would require compensating positive and

negative imbalances in adjacent basins, yet Fig. 2 sug-

gests that the imbalances are of the same sign in all

ocean basins.

A closer look at Figs. 2d and 3d also suggests that the

magnitude of the imbalances in a number of the ocean

basins (e.g., the South Atlantic) exceeds the combined

uncertainty in the component fluxes. Recall, however,

that the uncertainties reported represent one-standard-

deviation error bars on each component flux. Imbalances

that exceed the reported uncertainties may, therefore, be

explained by errors greater than one standard deviation

in one or more component fluxes. A closer look at the

uncertainties in all component fluxes compiled in Table 2

reveals that the net surface energy imbalance of 28Wm22

in the South Atlantic could be nearly eliminated if DLR

and DSR are reduced by their 1s uncertainties while

emitted longwave flux (ULW), reflected shortwave flux

(USW), Qs, and LE are increased by theirs. While it

seems unlikely that estimates of downwelling and up-

welling fluxes would be biased in precisely this manner,

this example illustrates that balance can, in principle, be

achieved within the stated uncertainties of the compo-

nent fluxes. This concept is explored quantitatively in

the next section through the use of a general framework

for adjusting component fluxes subject to relevant bal-

ance constraints.

4. Objectively imposing balance constraints

The presence of large surface energy imbalances over

the oceans highlights the challenge of integrating in-

dependent datasets into a more complete budget. While

it is desirable to maintain independent algorithms for

each of the component fluxes for practical reasons and to

avoid unwanted correlations that may influence sub-

sequent analyses, global and regional energy budget and

water cycle closure relationships provide valuable in-

formation that is neglected when component fluxes are

derived in isolation. Since closure arguments do not apply

on the scales of instantaneous satellite fields of view from

which the individual fluxes are derived (especially over

oceans), it is not possible to invoke such constraints on

individual retrievals, but theymay be applied a posteriori

to averages over larger time and space scales. Motivated

by a desire to generate a balanced energy budget subject

to all available constraints, including the latest in situ

estimates of changes in ocean heat content, we propose a

new objective approach for adjusting all component

fluxes that explicitly accounts for the relative accuracy to

which they are known. The method is sufficiently general

that it can simultaneously include both energy and water

balance constraints to take advantage of the coupling

introduced through latent heating.

There are several different approaches for solving an

optimization problem of this type. Adapting concepts

from the variational data assimilation and optimal esti-

mation retrieval communities, the method adopted here

seeks to recast the problem into a form that minimizes a

cost function subject to a prescribed set of constraints. In

general, any energy or water balance constraint can be

written in the form

R5 �
M

i51

F
i
2 �

N

o51

F
o
, (1)

where Fi and Fo represent all fluxes into and out of the

system, respectively, and the residual R represents the net

storage in the system. The goal is to find the most likely

vector of fluxes F5 (Fi, Fo) given the vector of in-

dependent observational flux datasetsFobs 5 (Fi,obs, Fo,obs)

and the observed value of the residual Robs. At Earth’s

surface, for example, downwelling longwave and short-

wave radiation (Fi) are balanced by reflected shortwave

radiation, emitted longwave radiation, and fluxes of latent

and sensible heat from the surface to the atmosphere (Fo)

to within a very small residual. Recent analysis of OHC

from the Argo array suggests that the residual ocean heat

storageRobs is on the order of 0.66 0.4Wm22. Changes in

OHC account for about 90% of the global annual mean

heat storage, so other contributions, such as those from

land heat storage and melting glaciers, are assumed to fall
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within the uncertainties adopted for this constraint

(Trenberth et al. 2014). Given the narrow range of surface

imbalances allowed by the OHC constraint (0.2–1Wm22)

relative to the errors in the component fluxes (several

Wm22), obtaining the optimalF requires adjusting each of

the component fluxes within their respective error bounds

in such a way as to reduce the implied storage to lie within

the error bars on Robs.

This is achieved by invoking two common (and nec-

essary) assumptions concerning the uncertainties in the

component fluxes: that they are random and Gaussian.

While it is difficult to justify either of these assumptions,

they are required in the absence of definitive bias or error

distribution information. Under these assumptions, op-

timal flux values will maximize the joint probability:

P(F jF
obs

,R
obs

)5 exp[2(F2F
obs

)TS21
obs(F2F

obs
)]

3 exp

"
2
(R2R

obs
)2

s2
R

#
, (2)

where the distinction between the incoming and outgoing

fluxes has been dropped for simplicity. The termSobs is the

error covariance of all fluxes derived from the uncertainty

analyses described above, and s2
R is the error variance in

the heat storage constraint. The maximum occurs when

the following cost function is a minimum:

J5 (F2F
obs

)TS21
obs(F2F

obs
)1

(R2R
obs

)2

s2
R

. (3)

Since the residual R is just a linear combination of the

component fluxes, the cost function is quadratic and can

be minimized exactly by setting the derivative with re-

spect to F equal to 0. Optimal values of the component

fluxes are given by

F5F
obs

1S
F
KTS21

obs(Robs
2KF

obs
) , (4)

where K is the Jacobian of R with respect to the com-

ponent fluxes and SF 5 (KTS21
y K1S21

obs)
21 is the error

covariance for the component fluxes after optimization.

If Gaussian statistics are assumed, Eq. (4) represents

both themost probable posterior estimate andminimum

variance estimate of the parameters of interest subject

to the constraint imposed by the residual or storage R

(L’Ecuyer and Stephens 2002). As a metric for estab-

lishing the quality of the final fit, one can apply the x2

test to the results. To the extent that errors are random

and Gaussian, a value of the quantity

x2 5 (F2F
obs

)TS21
obs(F2F

obs
)1

(R2R
obs

)2

s2
R

(5)

that is less than or equal to the number of degrees of

freedom in the system (i.e., the total number of indi-

vidual fluxes being optimized) indicates that the result-

ing flux adjustments do not drastically violate the error

assumptions. A larger value of x2 is indicative of larger

than anticipated biases in one or more of the component

fluxes. Another simple (but valuable) metric of the

success of the optimization is a direct comparison of the

magnitudes of the adjustments made to each component

flux against their estimated uncertainties. Energy budget

residuals, computed as the sum of the adjustments to the

component fluxes, that exceed associated error bounds

are indicative of areas where balance could not be ad-

equately achieved.

One of the principal advantages of this approach lies

in the fact that it can be scaled to arbitrarily complex

problems involving any number of fluxes and con-

straints. In particular, it can be used to establish an ex-

plicit link between the energy budget and water cycle

through the connection between latent heating, evapo-

ration, and precipitation. In this way, disparate obser-

vational datasets that are seldom considered together,

such as radiative fluxes and surface runoff, can be cou-

pled to their mutual benefit through their relationships

to precipitation and evaporation in energy and water

budget closure equations. This simultaneous accounting

of both energy and water cycles is a unique aspect of this

study and the companion water cycle paper that allows

twice as many closure constraints to be leveraged to

provide an internally consistent set of estimates of en-

ergy and water fluxes representative of the climate in the

first decade of the twenty-first century.

a. Application to energy and water budgets

This method for imposing closure constraints on in-

dependent observational flux datasets has been applied

to annual and monthly mean energy and water fluxes on

global and continental scales by adopting closure con-

straints appropriate to each specific time and space

scale. Over land surfaces, annualmean energy andwater

cycle closure require (in energy units)

L
y
(dS

co,i
5P

co,i
2LE

co,i
2Q

co,i
) and (6)

NET
co,i

5DLR
co,i

1DSR
co,i

2ULW
co,i

2USW
co,i

2 SH
co,i

2L
y
LE

co,i
, (7)

where dS is the change in surface water storage andNET

represents energy absorbed at the surface. All other

fluxes are as defined in Table 3, and the latent heat of

vaporizationLy is taken to be 2500kJ kg
21 (2800kJ kg21

for sublimation over ice surfaces). Similarly, in the at-

mosphere we require
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L
y
(dW

co,i
5C

co,i
2P

co,i
2LE

co,i
) and (8)

NETA
co,i

5F
co,i

2OLR
co,i

2OSR
co,i

2DLR
co,i

2DSR
co,i

1ULW
co,i

1USW
co,i

1SH
co,i

1L
y
P
co,i

1CS
co,i

, (9)

where dW is the change in total precipitable water in the

atmospheric column, NETA represents atmospheric

heat storage, C denotes atmospheric moisture conver-

gence, and CS is the atmospheric convergence of dry

static energy and kinetic energy. These equations apply

to all continents i on annual or monthly scales and ex-

plicitly demonstrate how fluxes of energy and water are

coupled through the latent heat release. Similar equa-

tions apply to each ocean basin with one important

distinction: an additional term must be added to each of

the surface budget equations [Eqs. (6) and (7)] to ac-

count for water and heat transports between basins that

occur on all time and space scales.

On global scales, mass continuity and water balance

also require

L
y
(dS

L
1 dS

O
5 dW

L
1 dW

O
) , (10)

L
y
(C

L
52C

O
) , (11)

Q
L
52Q

O
, (12)

OT
O
5 0, and (13)

CS
L
52CS

O
, (14)

where the subscripts L and O correspond to the sum

over all land regions and ocean regions, respectively.

The term OTO is the net oceanic transport (of heat or

water) integrated over all ocean basins.

To account for the additional complications of storage

and transport on monthly scales, the optimization is

executed in stages. First, all annual fluxes are simulta-

neously optimized by minimizing a large matrix of cost

functions analogous to Eq. (3) derived from applying

Eqs. (6)–(14) to all seven individual continents and the

sum of all ocean regions on annual scales. The terms

dSco,i, dSO, dWco,i, and dWO are assumed to vanish on the

annual mean, while estimates of all other terms derive

from the datasets described in section 2. It is further

assumed that NETco,i, NETAco,i, and all of the NETAO

are small on annual scales since most of the excess en-

ergy in today’s climate is absorbed into the oceans

(Trenberth et al. 2014). This assumption ignores trends

in terrestrial storage evident in GRACE observations.

Greenland, Antarctica, and the glaciers along the Gulf

of Alaska, in particular, have been shedding ice at a total

rate of 380km3 yr21 (Luthcke et al. 2013), but here, dS is

derived from detrended time series, and mean conti-

nental water budgets are assumed with annual dS equal

to zero. There has also been recent evidence of trends in

atmospheric water vapor (e.g., Chung et al. 2014), but

the implied energy fluxes are at least an order of mag-

nitude less than those inferred from observed changes in

OHC; thus it is assumed that only the small residual flux

of energy into the oceans needs to be considered on these

scales. To reduce the impact of any biases these as-

sumptions may introduce, uncertainties in annual-mean

dS and dW are inflated to be 0.2Wm22 to encompass the

possibility of residual terrestrial and atmospheric water

storage.

Application of closure relations in oceanic regions is

complicated by heat exchanges between basins. While

TABLE 3. Observed components of the global and annually averaged energy budget and their uncertainties before and after optimi-

zation. All values are reported in energy flux units (Wm22). The reader is referred to the companion water cycle paper (Rodell et al. 2015)

for additional details regarding runoff, atmospheric convergence, and water storage datasets used in the water budget closure equations.

Full Name Abbreviation Original Constrained

Incoming solar F 340.2 6 0.1 340.2 6 0.1

Outgoing shortwave OSR 102 6 4 102 6 2

Outgoing longwave OLR 238 6 3 238 6 2

Downwelling LW at surface DLR 344 6 6 341 6 5

Downwelling SW at surface DSR 189 6 6 186 6 5

Surface emitted ULW 398 6 5 399 6 4

Surface reflected USW 22 6 2 22 6 2

Sensible heat SH 23 6 5 25 6 4

Atmospheric latent heat (precipitation) P 78 6 7 81 6 4

Surface latent heat (evaporation) LE 75 6 7 81 6 4

Atmospheric convergence C 20.6 6 4 0 6 1

Surface runoff (derived) Q 3 0

Atmospheric water storage (derived) dW 24 0

Surface water storage (derived) dS 3 0

Surface NET (derived) NET 216 0.45

Atmospheric NET (derived) NETA 14 0
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observations of ocean heat transport exist (e.g., Trenberth

and Fasullo 2008), we have chosen to treat the sum of all

oceanic regions simultaneously by applying the closure

relations in Eqs. (10)–(14) to the integrated ocean energy

budget. The net oceanic flux adjustment is then parti-

tioned among the individual basins using a Lagrange

multiplier approach that inversely weights changes ac-

cording to the error variances of the individual monthly

estimates. Energy balance closure on monthly scales is

also complicated by heat transport and storage. Lacking

accurate global observations of these quantities, energy

balance constraints are not applied directly on monthly

scales. Instead, monthly best-guess fluxes are defined

such that they match the sum to the optimized annual

mean fluxes through incremental adjustments that are

inversely proportional to their best-guess uncertainties.

Again, a Lagrange multiplier approach is used to parti-

tion the residual between the adjusted annual mean and

the sum of the unadjusted monthly mean fluxes among

the individual months. Additional details concerning this

approach and a complete discussion of the resultingwater

cycle estimates can be found in the companion manu-

script by Rodell et al. (2015).

b. Constrained global energy budget

ApplicationofEq. (4) assuming a surface energy residual

consistent with published estimates of OHC changes, ne-

glecting heat storage over land regions (Trenberth et al.

2014), and noting that atmospheric convergence and

runoff vanish on global scales yields the estimates of the

surface energy budget and water cycle reported in the

right-hand column of Table 3. While the resulting fluxes

vary slightly if alternate datasets are adopted in the

minimization, eight different variants tested all yield

budgets within the quoted error bars, and the signs of the

implied adjustments were found to be insensitive to the

specific choice of flux datasets used. As should be ex-

pected almost all fluxes are adjusted through the opti-

mization process, with the largest changes in parameters

that are the least well constrained by observations (e.g.,

evaporation and DLR).

It is encouraging that the resulting flux estimates lie

within the ranges implied by the uncertainties in the

observed fluxes. The magnitudes of the adjustments are

also generally consistent with published estimates of the

uncertainties in each component flux. The precipitation

adjustment, for example, falls within the uncertainty

estimates provided by Adler et al. (2012), while adjust-

ments to DLR are consistent with the findings of

Stephens et al. (2012a). Furthermore, x2 5 1:9, suggest-

ing that the resulting ensemble of fluxes is consistent

with assumed errors given that this problem is charac-

terized by 9 degrees of freedom.

The error bounds on all fluxes are also reduced in the

optimization process, but it must be emphasized these

no longer represent the accuracy of the observations and

should not be viewed as uncertainties in the traditional

sense. Instead, they represent improved confidence in

the overall ensemble of fluxes owing to the addition of

balance constraints that are known to a much higher

degree of confidence than the original observations but

were not previously included in the independent algo-

rithms. The error estimates associated with the un-

adjusted fluxes should be adopted when quoting

uncertainties in individual flux datasets. The reduced

error bounds also reflect the assumption that the un-

certainties in the component fluxes are random and

Gaussian. As noted already, this is not the case since

several potential sources of structural error have been

documented in the literature. Quantitative information

concerning biases in component fluxes due to structural

errors can easily be incorporated into the analysis by

modifying the initial flux estimates, but more work is

needed before such quantitative bias corrections are

available. It is more likely, however, that such definitive

bias information will be incorporated at the algorithm

development level before reaching the stage where

products are combined into a global budget.

The optimized estimates of global energy fluxes

produced here (Fig. 4) represent a compromise be-

tween recently published energy budgets. Precipitation

and evaporation, for example, are very similar to those

reported by Trenberth et al. (2009), while sensible

heating and DSR are in closer agreement with

Stephens et al. (2012b). Overall, however, the values

agree most closely with the surface-based analysis of

Wild et al. (2013), with no differences exceeding

4Wm22. The current satellite-based SH flux estimates

are, however, larger than those reported elsewhere,

exceeding estimates from reanalyses and models by as

much as 30% (Trenberth et al. 2009; Wild et al. 2015).

The estimates of DLR in both the present study and

Wild et al. (2013) fall between the estimates from the

other two reconstructions but agree very well with the

value of 342 6 3Wm22 that was recently derived from

surface observations by Wang and Dickinson (2013),

although the uncertainty estimate provided in Fig. 4 is

somewhat larger.

c. Continental and basin scales

The distribution of annual mean surface energy fluxes

for all continents and ocean basins after imposing bal-

ance constraints is presented in Fig. 5. A complete

summary of all component fluxes and corresponding

uncertainties after optimization is compiled in Table 4

for reference. In general, the net radiation incident on

8334 JOURNAL OF CL IMATE VOLUME 28



the ocean surface has been diminished in all basins

through reductions to both DLR and DSR, while pre-

cipitation and evaporation have both increased. Over

continents the picture is more varied, with surface radi-

ation increasing over Africa and to a lesser extent South

America, Australia, and Eurasia but decreasing over

North America and Antarctica. Latent and sensible heat

adjustments mirror those in radiation, increasing over

continents where radiation is reduced and decreasing

over continents where radiation is increased. Once con-

verted to flux units (by dividing by 0.147 and 0.364, re-

spectively) the continent and ocean rows of Table 4 show

remarkable agreement with the separate land and ocean

energy budgets presented in Wild et al. (2015). The par-

titioning of ULW, DLR, and ET between land and

oceans all agree within 3Wm22. As noted in Wild et al.

(2015), despite significant differences in their distribution

with latitude, DSR is almost identical over land and

ocean regions, 185 and 187Wm22, respectively, com-

pared to 185 and 184Wm22 reported in Wild et al.

(2015). The most significant exception concerns SH flux

estimates that are more than 15% larger over both land

and oceans in the present study, reflecting the potential

for large biases in these estimates from both satellites and

reanalyses and justifying the large uncertainties assigned

to this quantity in the current study.

The effect of imposing balance constraints is clearly

evident in the global distribution of annually averaged

energy into the surface after optimization (see Fig. 5d).

The component fluxes are now balanced over all conti-

nents as anticipated. While the energy budgets of indi-

vidual basins do not necessarily balance since heat can be

exchanged between basins, imbalances are significantly

smaller than those in Fig. 2d and now exhibit the combi-

nation of surpluses and deficits necessary to support Eq.

(13). TheGulf ofMexico andCaribbean Sea, for example,

exhibit strong heating that likely balances weak overall

cooling in the much larger North Atlantic basin.

The refinements to all annually averaged surface en-

ergy fluxes in each continent and ocean basin are iso-

lated in Fig. 6. As in the global case, adjustments

generally fall within the ranges implied by the un-

certainties in each component flux, but several oceanic

adjustments approach the maximum allowed by their

uncertainties. This, coupled with the fact that fluxes tend

to be adjusted in the same sense (increased or de-

creased) in all basins, suggests that biases exist in some

of the component fluxes. Latent heat fluxes (both pre-

cipitation and evaporation) are generally adjusted by

smaller increments in the current optimization than is

argued by Stephens et al. (2012b), likely owing to the

additional water cycle constraints applied in the current

FIG. 4. As in Fig. 1, but after application of relevant energy and water cycle balance constraints.
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analysis. The physical coupling of the energy and water

cycles introduced in the joint analysis of this study and

its companion, Rodell et al. (2015), allows other hy-

drologic parameters such as runoff and atmospheric

moisture convergence to influence themagnitudes of the

adjustments in the current analysis. Thus, while initial

energy imbalances suggest that latent heating should be

increased significantly, water cycle constraints limit the

magnitude of the adjustments since precipitation already

exceeds the sum of evaporation and runoff [see Rodell

et al. (2015) for additional details]. Residual imbalances

are therefore transferred to the radiative fluxes, resulting

in larger adjustments to DLR and DSR. Although there

is no way to demonstrate that the adjustments presented

FIG. 5. Net energy exchange from the atmosphere to the surface after objectively introducing

all relevant continental-scale energy and water cycle constraints.
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here are more realistic than those proposed elsewhere,

they have the advantage that the methodology guaran-

tees that the resulting fluxes satisfy both energy and

water cycle constraints.

d. Seasonal cycles

In most locations the largest regional climate fluctu-

ations are modulated by seasonal variations in solar in-

solation. Annual cycles of regional energy budgets

therefore provide a first-order mode of climate vari-

ability that must be captured if we are to predict more

subtle interannual changes. One of the advantages of the

blendingmethodology introduced above is that it is fully

scalable to problems with larger dimensionality, pro-

vided suitable energy andwater cycle closure constraints

can be defined. As a result, the methodology is an ideal

tool for documenting the seasonal cycle of all compo-

nent energy fluxes on continental and ocean-basin scales

subject to monthly equivalents to the constraints listed

above. Estimates of the uncertainty in each monthly

mean flux are derived using the same procedure outlined

in section 2 but are not reported explicitly in the interest

of space.

The seasonal cycles of all fluxes contributing to TOA

energy balance are summarized in Figs. 7 and 8 for all

continents and ocean basins, respectively. For brevity,

only optimally blended results are shown, and fluxes

have been plotted in watts per square meter to facilitate

displaying all regions in a single figure. Values should be

multiplied by the appropriate areas in Table 2 to accu-

rately reflect the partitioning of energy between regions.

With the exception of Africa, net TOA radiation ex-

hibits an annual period wave mode in all regions that

tracks the periodicity of solar radiation. The magnitudes

of the annual variations in net shortwave and outgoing

longwave radiation over the continents agree well with

those depicted in Trenberth and Fasullo (2013a), and, as

in that study, peak emission of longwave radiation

generally lags the peak in net solar radiation by one to

two months (e.g., North America and Eurasia). Africa,

on the other hand, exhibits a unique bimodal structure in

net radiative balance at the TOA with peaks in the

spring and fall seasons. This is consistent with the results

of Trenberth and Fasullo (2013a) who point out that this

is caused by Africa’s comparable areas north and south

of the equator and double monsoon.

Equivalent seasonal cycles in surface fluxes are pre-

sented in Fig. 9 (continents) and Fig. 10 (basins). Lags in

longwave fluxes relative to shortwave fluxes are en-

hanced over the oceans and muted over the continents

relative to the TOA. For example, peaks in both long-

wave emission andDLR lag surface shortwave radiation

by at least two months over all major ocean basins,

whereas the peaks in all radiative fluxes generally co-

incide over land. As one might expect this result is

consistent with previous analyses of the seasonal cycle of

surface temperature [see Trenberth (1983) and refer-

ences therein] and reflects the lag in ocean temperature

response to heating due to the large heat capacity of

oceans relative to land. It also suggests that changes in

atmospheric properties strongly modulate the connec-

tion between peak surface emission and OLR over

continents.

In all ocean basins, turbulent heat transfer is domi-

nated by latent heating from evapotranspiration. In the

large ocean basins, summertime minima and wintertime

TABLE 4. As in Table 2, but after imposing relevant energy and water balance constraints.

Map Continent/basin P LE DLR DSR ULW USW SH

01 North America 1.41 6 0.06 0.79 6 0.06 6.90 6 0.12 3.65 6 0.15 8.33 6 0.12 0.66 6 0.08 0.77 6 0.15

02 South America 2.34 6 0.09 1.37 6 0.07 6.69 6 0.09 3.75 6 0.12 7.70 6 0.07 0.46 6 0.06 0.92 6 0.11

03 Eurasia 3.05 6 0.16 1.78 6 0.18 15.9 6 0.40 8.76 6 0.44 19.3 6 0.54 1.78 6 0.12 1.82 6 0.35

04 Africa 1.63 6 0.07 1.33 6 0.07 11.0 6 0.19 7.41 6 0.24 13.7 6 0.17 1.67 6 0.06 1.73 6 0.19

05 Australia 0.31 6 0.02 0.20 6 0.02 2.72 6 0.07 1.82 6 0.08 3.43 6 0.09 0.33 6 0.05 0.58 6 0.06

06 Island continent 0.30 6 0.02 0.11 6 0.02 0.53 6 0.02 0.25 6 0.02 0.60 6 0.02 0.02 6 0.01 0.05 6 0.02

07 Antarctica 0.19 6 0.03 0.01 6 0.01 1.64 6 0.16 1.58 6 0.12 2.20 6 0.08 1.27 6 0.12 20.2 6 0.09

08 Arctic Ocean 0.270 6 0.11 0.10 6 0.02 2.31 6 0.07 0.98 6 0.04 2.61 6 0.03 0.51 6 0.09 0.07 6 0.03

09 Caribbean Sea 0.370 6 0.04 0.54 6 0.05 1.75 6 0.03 1.06 6 0.03 1.99 6 0.01 0.05 6 0.01 0.05 6 0.02

10 Mediterranean Sea 0.120 6 0.02 0.29 6 0.04 0.90 6 0.02 0.56 6 0.03 1.09 6 0.01 0.03 6 0.01 0.06 6 0.02

11 Black Sea 0.030 6 0.01 0.04 6 0.01 0.15 6 0.01 0.08 6 0.01 0.18 6 0.01 0.00 6 0.01 0.01 6 0.01

12 North Pacific 9.450 6 0.74 8.62 6 0.69 30.6 6 0.51 16.1 6 0.47 35.4 6 0.31 0.99 6 0.09 1.44 6 0.29

13 North Atlantic 3.640 6 0.38 4.27 6 0.33 15.4 6 0.23 7.92 6 0.27 17.8 6 0.17 0.51 6 0.04 0.88 6 0.18

14 Indian Ocean 6.720 6 0.65 7.97 6 0.69 26.7 6 0.38 14.0 6 0.40 30.8 6 0.23 0.95 6 0.07 1.56 6 0.31

15 South Pacific 8.680 6 0.81 9.90 6 0.76 34.8 6 0.55 18.9 6 0.36 40.7 6 0.33 1.37 6 0.09 2.01 6 0.37

16 South Atlantic 2.700 6 0.37 3.86 6 0.28 15.6 6 0.18 8.14 6 0.28 17.8 6 0.14 0.71 6 0.08 0.89 6 0.18

— Continents 9.23 6 0.41 5.60 6 0.40 45.5 6 1.02 27.2 6 1.13 55.3 6 1.06 6.19 6 0.48 5.60 6 0.93

— Oceans 31.9 6 1.76 35.6 6 1.76 128. 6 1.68 67.9 6 1.63 148. 6 1.14 5.13 6 0.43 6.98 6 1.28

— Global 41.2 6 2.17 41.2 6 2.16 174. 6 2.69 95.1 6 2.75 203. 6 2.19 11.3 6 0.90 12.5 6 2.21
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peaks in evaporation tend to reinforce the annual cycle

in solar insolation into the oceans, causing large seasonal

reversals in the net energy exchanged between the

oceans and overlying atmosphere. Residuals in annual

net heat exchange for individual basins are generally less

than 10% of the amplitude of the seasonal cycle (Fig. 5).

Over the continents, latent and sensible heat both con-

tribute to the net turbulent heat transfer between the

surface and the atmosphere, significantly enhancing the

seasonal cycle in fluxes of energy from the surface to

the atmosphere. The observed summer maxima and

winter minima in turbulent heat fluxes over land play an

important role in balancing corresponding changes in

DSR, leading to seasonal cycles in net energy exchange

between land surfaces and the overlying atmosphere

with amplitudes generally less than 4% of the compo-

nent upwelling and downwelling fluxes.

There are substantial hemispheric asymmetries in the

polar regions, with Antarctica on average 20K colder

and 10% brighter than the Arctic. The coldest monthly

surface emission observed on Earth is 147Wm22 in

Antarctica in August, corresponding to a mean surface

temperature of 225K. By comparison, the minimum

monthly emitted flux in the Arctic is 203Wm22 in

February, implying a minimum temperature of 245K.

The Arctic also exhibits far stronger variations in TOA

net radiation over the course of the year, losingmore than

180Wm22 in November while gaining a small 20Wm22

in July, consistent with the CERES-based estimates re-

ported in Porter et al. (2009). The magnitude of the ob-

served annual cycle in TOA radiation generally agrees

with Arctic energy balance reconstructions based on the

40-yr ECMWF Re-Analysis, the NCEP–NCAR 40-Year

Reanalysis, and the Japanese 25-year Reanalysis Project

FIG. 6. Adjustments to radiation, sensible heat, and latent heat fluxes during the optimization

process.
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to within the stated uncertainties, although the reanalyses

consistently place the maximum in June as opposed to

July (Serreze et al. 2007; Porter et al. 2009). By contrast,

the present work indicates that Antarctica does not

experience a surplus of TOA radiation at any time of year

but also never losesmore than 150Wm22 to space.At the

surface, both regions experience net energy gains in the

summer months that are offset by corresponding energy

losses in the winter, but there is a clear seasonal asym-

metry in the net energy exchange between the atmo-

sphere and surface in the Arctic owing to the buffering

effects of sea ice that shift the peak surface reflection and

emission relative to incoming solar radiation.

Another general observation can be made regarding

balance on regional scales: as time and space scales are

reduced, satisfying relevant budget constraints becomes

increasingly difficult because of the increased likelihood

of structural biases in the relevant observational data-

sets. For example, the annual continental-scale optimi-

zation involves 73 degrees of freedom and results in

x2 5 21, while the monthly continental-scale optimiza-

tion results in x2 5 547 with 660 degrees of freedom.

Thus, while x2 indicates an acceptable overall fit in both

cases, the average adjustment approaches the magni-

tude of the assumed uncertainties in the annual-cycle

continental-scale optimization. Closer comparison of

the final flux estimates on the scales of individual con-

tinents and basins reveals that energy budget residuals

(given by the sum of the adjustments to individual flux

components) are found to fall within error bounds over

all continents and in the smaller Caribbean, Mediter-

ranean, and Black Seas. Residuals in the North Pacific,

South Pacific, and Indian Oceans, however, all exceed

associated closure errors. In these regions, adjustments

to DLR, DSR, and latent heat fluxes all exceed their

corresponding uncertainty estimates, confirming the

presence of biases in some of the component energy

fluxes on these scales that can likely be attributed to the

sources of structural error listed above.

5. Discussion

Recent attempts to document the global energy bal-

ance using modern satellite datasets have yielded de-

pictions of the global energy budget that differ in several

key ways, most notably in their estimates of downwelling

longwave radiation and atmospheric latent heat release.

This paper revisits the issue of imbalances in observa-

tionally derived energy flux datasets with the goal of

establishing objectively balanced reconstructions of the

current state of the global energy budget and its distri-

bution on continental and ocean-basin scales. Two sets of

energy budget estimates are reported that address two

important questions: ‘‘How well do current observations

constrain the energy budget?’’ and ‘‘To what extent can

balance be objectively imposed within rigorous estimates

of the uncertainties in the component fluxes?’’

In the absence of balance constraints, various combi-

nations of modern satellite datasets suggest that globally

and annually averaged surface radiative fluxes exceed

corresponding turbulent energy fluxes by 13–24Wm22.

These imbalances occur primarily in oceanic regions

where all component fluxes are derived independently.

The systematic manner by which downwelling radiative

fluxes exceed turbulent heat fluxes across all major ocean

basins is more indicative of biases than of random errors.

This can be attributed to the complexities of deriving

energy and water fluxes from remote measurements that

FIG. 7. Annual cycle of TOA radiative fluxes for each continent

defined in Fig. 2. The heavy black line represents the net radiation

into the region.

FIG. 8. As in Fig. 7, but for each ocean basin.
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necessitate independent algorithms that use distinct

observations and assumptions. Since each flux dataset is

developed in isolation, valuable energy budget and wa-

ter cycle closure information that could help mitigate

biases is omitted.

In an effort to reintroduce this closure information and

address the need for a balanced monthly, continental-

scale energy budget dataset for documenting today’s cli-

mate and evaluating its representation in models, a

method has been developed to objectively impose well-

defined global and regional energy and water balance

constraints on the system. While the resulting flux esti-

mates can no longer be traced to unique observational

origins, they constitute a balanced ensemble that main-

tains consistency with the original component datasets

and their estimated uncertainties. After optimization,

energy balance residuals are generally found to be less

than closure errors, indicating that continental energy

budgets can be balanced within the uncertainties in the

component flux datasets. More generally, the results

demonstrate that much of the discrepancy between other

recent depictions of the global energy budget can, in fact,

be explained within the error bounds of the component

fluxes. On the other hand, the magnitude of the adjust-

ments required to achieve balance in some regions lies

near the extremes implied by the prescribed uncertainty

ranges, especially on monthly time scales, underscoring

the need for reducing uncertainties in observation-based

energy flux datasets in the future.

The fluxes generated in this study and its companion

(Rodell et al. 2015) provide state-of-the-art reconstructions

of energy flows and water fluxes at the beginning of the

twenty-first century on monthly and continental scales

that integrate the most current observational capabil-

ities. The fluxes simultaneously satisfy all relevant en-

ergy and hydrologic cycle closure constraints while

preserving the information contained in the original

observationally derived datasets through direct use of

rigorous uncertainty estimates. The resulting global energy

balance reconstruction represents a compromise between

other recent estimates. Precipitation and evaporation are

in better agreement with the values reported by Trenberth

et al. (2009), while estimates of DSR and sensible heating

align better with the estimates of Stephens et al. (2012b).

Overall, the current reconstruction most closely agrees

with that of Wild et al. (2013), which derives primarily

from surface-based observations. In particular, our es-

timates of DLR (or ‘‘back radiation’’ as it is sometimes

termed) agree very well with those of Wild et al. (2013)

as well as those reported in Wang and Dickinson (2013)

but fall in between the estimates reported in Trenberth

et al. (2009) and Stephens et al. (2012b). It is worth

noting that our surface sensible heating estimate

(25Wm22) exceeds the value listed in many current and

historical reconstructions by 20%–30% and may war-

rant further investigation. The complete observational

energy and water budget analysis described here and in

the companion paper by Rodell et al. (2015) is available

for download (GES DISC 2015). This dataset includes

all energy and water cycle fluxes on continental and

monthly space and time scales both prior to and after the

addition of relevant balance constraints.

Despite its strengths, there are some important ca-

veats associated with the current analysis. First, a de-

cision was made to focus on the golden age of satellite

observations in the first decade of the new millennium

as opposed to developing a true climatology that is

FIG. 9. Annual cycle of surface energy fluxes for each continent

defined in Fig. 2. Net energy into the surface is presented as the

heavy black line.

FIG. 10. As in Fig. 9, but for each ocean basin.
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commonly defined to correspond to a 30-yr period.

Given the recent advances in instrumentation over this

period and the challenges associated with creating

longer-term climate records from multiple satellite

platforms, this choice may be justified, but it should be

noted that the results presented here are influenced by

decadal variability such as the Pacific decadal oscilla-

tion, which has been shown to have contributed to the

reduced trends in global temperatures over the period

examined here (Trenberth and Fasullo 2013a). On the

other hand, trends that may be present in any of the

component fluxes over the 10-yr period, such as melting

of theGreenland ice sheet, were intentionally removed to

avoid the influence of interannual variability. Also, while

considerable effort was made to include information

from a range of high-quality observational data sources,

some datasets were chosen for inclusion in this study

based on the expertise of the members of the NEWS

team. In some cases, the methods used for combining

datasets, establishing uncertainties, and using reanalyses

to fill observational gaps were driven by convenience and

may not be optimal under all conditions. Likewise, there

is no rigorous justification for assuming that uncertainties

in component fluxes are unbiased and Gaussian in the

optimization. Biases in any of the component fluxes re-

duce the veracity of the resulting balanced flux estimates

and associated uncertainty ranges. In the absence of

quantitative information regarding such biases, however,

it is not clear that alternative assumptions are justified or

would yield dramatically different results given the

magnitudes of the error bars.

The flexibility of the framework outlined here also

offers several avenues for refinement. In the future, the

focus on decade mean conditions should be relaxed to

include interannual variability, and the spatial resolu-

tion of the analysis should be increased to better resolve

the different climate zones on Earth. Such an expansion

would benefit from the addition of several available

constraints that were not included in the current analy-

sis. Observational estimates of ocean heat transport and

surface radiative fluxes and fluxes of dry and moist static

energy derived from reanalyses could significantly ex-

pand the breadth of budget relationships employed in

the optimization and help to establish consistency with

these other valuable data sources. Including such ob-

servations may offer a pathway to bridge the remaining

discrepancies between modern energy budget re-

constructions and generating energy and water cycle

estimates on the scales desired for regional climate ap-

plications. As noted above, the systematic nature of the

flux adjustments required to achieve balance suggests

that biases are present in several of the component flux

datasets. While the magnitudes of these biases are not

inconsistent with the uncertainty estimates provided

here, additional refinement of the algorithms used to

derive component fluxes is clearly warranted. For ex-

ample, improving the microphysical property assump-

tions employed in global precipitation algorithms,

refining the near-surface temperature and humidity es-

timates and bulk formulas governing estimates of sur-

face turbulent heat fluxes, and fine-tuning methods

employed to represent the diurnal cycle of solar radia-

tion, clouds, and surface temperature in surface radia-

tive fluxes all offer the potential to improve regional

energy budget estimates.

It should be emphasized that the new energy balance

reconstructions presented here relied heavily on the re-

cent advances in Earth-observing capabilities provided by

the TRMM, GRACE, Aqua, Terra, Aura, CloudSat, and

CALIPSO satellites and corresponding tools for in-

tegrating these measurements into assimilation systems

likeMERRAandGLDAS. The results point to a need for

continued observation and refinement of satellite flux al-

gorithms, yet all of these missions are now operating well

beyond their design lifetimes, in some cases without

concrete plans for a successor. Given the importance of

observing climate variability, systematic planning for fu-

ture missions with new technologies for improving the

absolute accuracy of component fluxes and establishing

the factors that modify them is critical. Particular atten-

tion should be given to quantifying biases in component

fluxes on regional scales, and it is anticipated that analysis

of data from the recently launched Global Precipitation

Measurement (GPM), Soil Moisture Active Passive

(SMAP), and Suomi–National Polar-Orbiting Partnership

(Suomi NPP) missions will facilitate progress toward this

goal. The approach outlined here provides a framework

for integrating these new observations and reintroducing

relevant balance information to identify biases. As un-

certainties in observational datasets are reduced through

new technology and refined algorithms, it may no longer

be possible to objectively achieve balance. Such a break-

down (indicated by either large x2 or unrealistically large

adjustments to one or more fluxes) would provide direct

evidence of biases in individual datasets.
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