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1  |  INTRODUC TION

The increase in atmospheric CO2 since the turn of the 19th century 
has been driven by anthropogenic emissions from fossil fuel burn-
ing and industry (FF, hereafter “fossil emissions”) and emissions and 
removals from land use change (LU, hereafter “land use flux”), includ-
ing land management and related land cover changes (Friedlingstein 
et al., 2020). These emissions are offset by natural uptake of CO2 
by the terrestrial biosphere (B, hereafter referred to as the “terres-
trial sink,” for which “natural” is implied) and the ocean (O) (Broecker 

et al., 1979; Siegenthaler & Sarmiento, 1993). The balance of these 
sources and sinks determines the magnitude of the atmospheric 
growth rate (AGR):

where all fluxes are in units of PgC year−1, and positive values for 
each term indicate increasing strength of their source (FF, LU) or 
sink (O, B).

The atmospheric CO2 growth rate is well known from con-
temporary observations and historical reconstructions (Conway & 

(1)AGR = FF + LU − O − B

Received: 2 March 2022 | Accepted: 18 July 2022

DOI: 10.1111/gcb.16396  

R E S E A R C H  A R T I C L E

Using the atmospheric CO2 growth rate to constrain the CO2 
flux from land use and land cover change since 1900

Julia L. Dohner1  |   Benjamin Birner1  |   Armin Schwartzman2,3  |   Julia Pongratz4,5  |   
Ralph F. Keeling1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

1Scripps Institution of Oceanography, 
University of California, San Diego, 
California, USA
2Division of Biostatistics, University of 
California, San Diego, California, USA
3Halıcıoğlu Data Science Institute, 
University of California, San Diego, 
California, USA
4Department of Geography, Ludwig-
Maximilians Universität, München, 
Germany
5Max Planck Institute for Meteorology, 
Hamburg, Germany

Correspondence
Julia L. Dohner, Scripps Institution of 
Oceanography, University of California, 
San Diego, CA, USA.
Email: jdohner@ucsd.edu

Funding information
Eric and Wendy Schmidt, Grant/Award 
Number: Schmidt Futures; National 
Aeronautics and Space Administration, 
Grant/Award Number: NNX17AE74G; 
National Science Foundation, Grant/
Award Number: Graduate Research 
Fellowship Program

Abstract
We explore the ability of the atmospheric CO2 record since 1900 to constrain the 
source of CO2 from land use and land cover change (hereafter “land use”), taking 
account of uncertainties in other terms in the global carbon budget. We find that the 
atmospheric constraint favors land use CO2 flux estimates with lower decadal vari-
ability and can identify potentially erroneous features, such as emission peaks around 
1960 and after 2000, in some published estimates. Furthermore, we resolve an offset 
in the global carbon budget that is most plausibly attributed to the land use flux. This 
correction shifts the mean land use flux since 1900 across 20 published estimates 
down by 0.35 PgC year−1 to 1.04 ± 0.57 PgC year−1, which is within the range but at the 
low end of these estimates. We show that the atmospheric CO2 record can provide 
insights into the time history of the land use flux that may reduce uncertainty in this 
term and improve current understanding and projections of the global carbon cycle.
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Tans, 2009; Keeling et al., 2005; MacFarling Meure et al., 2006). As 
the best estimated term of Equation  (1), the growth rate has been 
used to constrain the combined land and ocean sinks, treating fossil 
emissions and land use flux as known (Ballantyne et al., 2012; Joos 
et al., 1999). This process has also been reversed and used to ver-
ify fossil emissions (Francey et al.,  2010; Peters et al.,  2017). The 
terrestrial sink (B) has commonly been calculated as a residual (Bres, 
referred to as the “residual terrestrial sink”) of the other terms of 
Equation (1) (Le Quéré et al., 2016). Finally, the AGR has also been 
used to quantify the land use flux occurring in the 19th century, a 
time when fossil emissions were small and growing atmospheric 
CO2 levels supported the existence of significant emissions from 
land use (Siegenthaler & Oeschger, 1987; Wilson, 1978; Woodwell 
et al., 1983). However, the growth rate has not been previously used 
to constrain the land use flux in the 20th century and later.

The land use flux has been estimated using bookkeeping meth-
ods and dynamic global vegetation models (DGVMs) (Figure 1). The 
bookkeeping approach uses vegetation and soil carbon densities to 
estimate the flow of carbon between the land and atmosphere in 
response to inferred and historical occurrences of land use activities. 
DGVMs simulate effects of both natural and anthropogenic pro-
cesses (including land use) on terrestrial carbon stocks and compare 
simulations with and without land use activity to calculate the land 
use CO2 flux. At present, estimates of the land use flux vary substan-
tially in magnitude and variability across models, and the flux is over-
all considered to be uncertain by ~50% (Friedlingstein et al., 2020).

The estimates of the land use flux vary widely across models related 
to differences in (i) underlying land use reconstructions, (ii) the degree 
of implementation of land use practices, (iii) definitions of the land use 
flux, and (iv) modeling parameterizations and process representation 
(Pongratz et al., 2018): (i) The source and implementation of information 
on changes in agricultural areas and forest management differ across 
studies (Friedlingstein et al., 2022) and substantially influence land use 

flux estimates (Gasser et al., 2020), as does uncertainty in the land use 
reconstructions themselves (Hartung et al., 2021). (ii) Land use practices 
(e.g., drainage, shifting cultivation, wood harvest) are implemented by the 
models to different extents (Arneth et al., 2017) and with varying com-
plexity (Pongratz et al., 2018). (iii) DGVMs typically include synergistic 
effects between natural environmental changes and land use change in 
their land use flux estimates, while bookkeeping approaches leave them 
out (Gasser et al., 2020; Obermeier et al., 2021; Pongratz et al., 2014). 
(iv) Model parameterizations are often not well constrained by observa-
tional data, such that, for example, carbon densities differ substantially 
across bookkeeping models (Bastos et al., 2021); furthermore, the details 
of processes underlying a realistic land use description, such as vegeta-
tion demography, differ widely across DGVMs (Fisher et al., 2018). These 
model aspects continue to be improved (Blyth et al.,  2021; Pongratz 
et al., 2018) and observations of proxies relevant to land use emissions, 
such as fires (van Marle et al., 2022), biomass changes (Xu et al., 2021), 
or forest loss (Feng et al., 2022) increasingly provide additional ways to 
evaluate the size and evolution at least of certain components of the land 
use flux. The AGR could provide an additional top-down, independent 
constraint on the plausibility of the complete land use flux.

The land use flux has been difficult to characterize and is a 
primary source of uncertainty in global anthropogenic fluxes of 
CO2 (Riahi et al., 2022). Current estimates of land use fluxes have 
means over 1900–2019 ranging from 0.76 (Vuichard et al., 2019) to 
2.15 PgC year−1 (Yue & Unger, 2015), with Friedlingstein et al. (2022) 
reporting an average annual flux of 1.32 ± 0.7 PgC year−1 since 1900. 
Booth et al.  (2017) show that reducing uncertainty in the land use 
flux can substantially narrow the range in projected future cli-
mate scenarios, which hinge on models tuned to match past fluxes. 
Additional constraints are needed to refine estimates of the land use 
flux and improve projections of the carbon cycle.

Here we examine whether the atmospheric CO2 growth rate in 
Equation  (1) can be used to constrain the land use flux since 1900. 
Recognizing that the overall uncertainty in the global carbon budget 
complicates analysis of land use fluxes on timescales shorter than 
decadal, we examine to what extent variations in the atmospheric CO2 
growth rate constrain the magnitude of decade-to-decade variability 
in the land use flux. We address this question by evaluating the com-
patibility of published estimates of the land use flux with the other 
terms in Equation (1) via linear regression fits. We examine the distri-
butions of scalars and error in these fits to draw inferences about defi-
ciencies in the prior estimates of the land use flux. In total, we find that 
the CO2 growth rate favors land use flux estimates with lower decadal 
variability, and also find that the budget requires an additive adjust-
ment, which we argue is most plausibly attributed to the land use flux.

2  |  METHODS

2.1  |  Model optimization

To evaluate the compatibility of various land use flux reconstructions 
(LUj) with the AGR, we employ Equation (1) as a linear regression:

F I G U R E  1  Estimates of land use flux via bookkeeping based 
(H&N, BLUE, OSCAR, in bold) and DGVM-based (17 estimates 
shown here faintly and separately in Figure S1; see Table S1 for 
references), all shown at annual resolution. We use the color map 
batlow (Crameri, 2021) in this study to prevent visual distortion of 
the data and to make this work accessible to readers with differing 
color vision (Crameri et al., 2020).
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    |  7329DOHNER et al.

where subscripts j and k refer to prior estimates of the land use flux 
and terrestrial sink, respectively, as compiled by the Global Carbon 
Project (Friedlingstein et al., 2020), and AGR, O, and FF are compos-
ite best estimates (Friedlingstein et al., 2020), with noise added, as 
discussed in Section 2.3. The parameters α and β are scalars fitted to 
minimize the mean squared error (MSE):

where error denotes the error smoothed with a 10-year moving 
average, and the MSE is calculated over the fitting period in which 
t0 is either 1900 or 1959 and t1 is 2019. The 1900 start was cho-
sen, as opposed to, for example, 1800, to avoid the need to taper 
the fitted constant α (all terms in the budget were zero prior to 
the industrial revolution). The 1959 start was chosen to restrict the 
analysis to the period of direct atmospheric measurements (as op-
posed to including ice core measurements). The decadal smoothing 
ensures that emphasis is placed on the decadal and longer time-
scales that are resolved in the land use flux reconstructions. The 
decadal smoothing also has the effect of smoothing discontinuities 
and changes in interannual variability in datasets due to changes in 
sampling methodology (e.g., atmospheric CO2 data). The optimized 
values for α and β depend on the selected prior estimates for the 
input terms, including LU and B (i.e., α = α jk, β = β jk). Below, we re-
port the error alternately as MSE or as the root mean squared error 
(RMSE = 

√

MSE).

2.2  |  Data description

We select LUj from 20 published land use flux inputs and one hypo-
thetical case of a constant LU. These include three bookkeeping-
based estimates from Houghton and Nassikas  (2017) (hereafter 
H&N), the Bookkeeping Land Use Emissions model (BLUE) (Hansis 
et al., 2015), and OSCAR (Gasser et al., 2020) (all in the updated 
versions as reported in Friedlingstein et al. (2022)), and 17 DGVM 
estimates included in Friedlingstein et al.  (2020). We also ex-
plore a case in which the land use flux is held constant (CONST) 
over the entire 1900–2019 period, which is equivalent to set-
ting LUj = 0 because Equation  (2) already contains the additive 
constant α.

For the terrestrial CO2 sink, we select Bk from 17 DGVM esti-
mates included in Friedlingstein et al.  (2020). For the atmospheric 
CO2 growth rate, we calculate the growth rate from the monthly 
atmospheric CO2 record compiled by Joos and Spahni  (2008, up-
dated), which combines atmospheric data from the NOAA/ESRL 
global network (1980–2019) and Mauna Loa, Hawaii (1958–1979), 
and ice core data from Law Dome, Antarctica (1600–1957). We use 
annual global estimates of the ocean sink and CO2 emissions from 
fossil fuel burning and industry (including the cement carbonation 
sink) as put forth by Friedlingstein et al. (2020).

2.3  |  Accounting for uncertainty in budget terms

In assessing each land use flux estimate via Equation (2), we apply 
randomly generated temporally autoregressive noise to the atmos-
pheric CO2 record (used to calculate AGR), FF, and O to allow for 
uncertainty in these inputs. The autoregressive noise x(t) is produced 
using the following construction:

where AR1 and AR2 represent the lag 1 and lag 2 autoregressive co-
efficients, C1 =

√

1 − AR12 − AR22 represents a scaling factor that 
normalizes the standard deviation of x(t) to 1, and ε is a Gaussian 
random variable with mean of 0 and standard deviation of 1. Once 
calculated, x(t) is scaled to have a standard deviation matching the 
published decadal uncertainty σ. The specific values used for each 
of the carbon budget terms are detailed in Table  1. This overall 
approach follows the “el camino” method described in Ballantyne 
et al. (2015). Autoregressive errors in FF and B are adopted directly 
from Ballantyne et al. (2015) and Anderegg et al. (2015). The autore-
gressive error in CO2 after 1958 is based on Ballantyne et al. (2012).

To account for errors in the atmospheric CO2 record before 
1958, we construct 10,000 bootstrap simulations of the ice core 
CO2 data between 1600 and 1957. To construct one bootstrapped 
time series, from the observed 79-point ice core record time se-
ries spanning 1600–1957 we randomly sample with replacement 
79 data points with their associated timestamps. This process is 
repeated 10,000 times. The bootstrap simulations are then joined 
with the direct atmospheric CO2 measurements for 1958–2019 
and together fit with a smoothing spline. The time series are joined 
before the spline to ensure continuity between the ice core and 
atmospheric records. For each of the 10,000 time series, we use a 
smoothing spline with a cutoff period of 7.6 years for the ice core 

(2)AGR + O − FF = LUj + � − � ⋅ Bk + error

(3)MSE =
1

(

t1 − t0
)

+ 1

t1
∑

t0

(

error(t)
)2

(4)x(t) = AR1 ⋅ x(t−1) + AR2 ⋅ x(t−2) + C1 ⋅ �(t)

Term AR1 AR2 σ Source

CO2 0.244 0.086 0.51 PgC Ballantyne et al. (2012)

FF 0.95 - 5% Ballantyne et al. (2015)

O 0.9 - 0.4 PgC year−1 Anderegg et al. (2015)

Note: The standard deviation of the generated noise time series is normalized to match published 
values (σ). Noise in FF is scaled at each yearly value to a standard deviation of 5% of the emissions 
in that year.

TA B L E  1  Expressions for generating 
temporally autocorrelated noise to 
account for uncertainty in the model 
inputs CO2 (atmospheric CO2 record, used 
to calculate AGR), FF, and O
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7330  |    DOHNER et al.

data and 2 years for the atmospheric measurements (𝛌  =  25.66, 
1-month data spacing, weights of 1 and 0.069 for ice core and 
atmospheric data, respectively. Parameters are chosen to obtain 
the desired approximate cutoff periods) (Bruno & Joos,  1997; 
Enting, 1987). We opt for a relatively low cutoff period for the ice 
core data as a conservative application of uncertainty. Finally, we 
truncate each of the 10,000 bootstrapped and spline-fit time series 
to the years 1900–1957. One of each of these 10,000 time series is 
joined with one generation of the CO2 record 1958 and later which 
includes random temporally autoregressive noise. We then differ-
entiate this joined CO2 record to calculate the annual AGR centered 
on July 1 for each model run. This process is repeated for each 
bootstrapped CO2 simulation for data prior to 1958 to produce 
10,000 instances of the AGR.

We allow for uncertainty in the terrestrial CO2 sink via bootstrap 
by randomly choosing with replacement one of 17 DGVM estimates 
(Bk) in Friedlingstein et al.  (2020) for each of the 10,000 ensemble 
runs. We include multiple formulations of the terrestrial sink rather 
than applying autoregressive random noise to a central estimate to 
better allow for systematic bias.

Finally, the distribution of error (Equation 2) for each land use 
flux estimate LUj is modeled by creating a 10,000-member ensem-
ble, each member of which includes one pick Bk and one rendering of 
each of the autoregressive functions and bootstraps. Each land use 
flux and each ensemble member therein yield a different estimate 
of the parameters α and β and quality of fit. No special significance 
is attached to pairs of LUj and Bk taken from the same DGVM (i.e., 

j = k). The spread in the 17 inputs for Bk and 10,000 instances of 
AGR, FF, and O are shown in Figure S2.

3  |  RESULTS AND DISCUSSION

3.1  |  Constraints on decadal variability in land use 
flux

We find that land use flux estimates with greater decadal variabil-
ity yield larger errors in Equation  (2) for both the 1900–2019 and 
1959–2019 timeframes (Figure  2). The model errors increase ap-
proximately linearly with the variance in the land use flux input. This 
relationship appears in both fitting timeframes, with the 1959–2019 
period showing a tighter relationship and a greater increase in error 
per increase in variance than fits over 1900–2019.

To illustrate differences in quality of fit, we examine the RMSE 
across the 10,000-member ensembles for three land use cases: 
H&N, BLUE, and CONST. H&N and BLUE are chosen because they 
make up two of the three estimates that are averaged to report the 
global land use flux in the Global Carbon Project, and out of these 
three estimates represent the high- and low-variance endmembers 
(Figure  1). We also examine the constant land use flux scenario 
because of its consistently low errors.

As shown in Figure  3, we find that using CONST and H&N 
leads to similar distributions of RMSE with means of 0.50 and 
0.52 PgC year−1 respectively, while BLUE yields a higher average 

F I G U R E  2  Relationship between regression errors in Equation (2) and decadal variability in the land use flux LUj used as input, with 
separate analyses for the 1900–2019 (panel [a]) and 1959–2019 (panel [b]) timeframes. The decadal variability in the land use flux is 
represented as the variance of the decadally smoothed land use flux over each period after removing a linear trend, and the model errors are 
shown as the mean annual mean squared error (MSE) over the same period across each land use flux's 10,000-member ensemble. The lines 
and accompanying equations are a linear least-squares fit to the data excluding CONST. All reported data for the grouped land use fluxes 
hereafter exclude model runs for the CONST case.
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    |  7331DOHNER et al.

error of 0.62 PgC year−1. Figure 3d shows the same information, but 
after calculating the percent difference in RMSE between H&N and 
CONST or BLUE and CONST on a point-by-point basis through the 
ensemble (i.e., for identical picks for Bk and time series of noise in 
AGR, O, and FF). This shows that the RMSE for H&N and BLUE are 
both systematically higher than that for CONST, with a larger differ-
ence for BLUE. The RMSE for the CONST ensemble is lower than the 
RMSE for any of the published estimates. The model errors for all 21 
land use flux cases are listed in Table S1.

The strong correlation between average regression error and 
decadal variability in land use fluxes can be understood by exam-
ining their time histories (Figure 4). We focus again on H&N, BLUE, 
CONST, and additionally ISBA-CTRIP as a representative high-
variance DGVM estimate. The errors of BLUE and ISBA-CTRIP 
both show a prominent positive excursion in the late 1950s, which 
coincides with a large variation in the BLUE and ISBA-CTRIP fluxes 
over the same period. The model errors for CONST and H&N are 
smaller and generally similar to one another, showing an overesti-
mation of atmospheric growth around 1950 and in the mid-2000s. 
The mid-2000s error also appears in the ISBA-CTRIP error time 
series.

The compatibility of land use fluxes with the atmospheric CO2 
growth rate can also be examined in relation to the residual terrestrial 
sink that is required to balance the global budget (Bres = FF + LUj –  
O – AGR). As shown in Figure 5, the residual sink demanded by BLUE 
strengthens rapidly from 1920 to 1960, then reverses trajectory and 
weakens until 1980. This behavior deviates qualitatively from the 
multi-model mean (BGCP) reported by Friedlingstein et al.  (2020) 
(shown in pink), which increases more uniformly with time. In con-
trast to BLUE, the terrestrial sink calculated from CONST grows 
more uniformly after 1900 with smaller decadal variations, leading 

to a residual terrestrial sink that also grows relatively uniformly with 
time, in better agreement with models.

The features contributing to error in the higher variability land 
use flux estimates may be tied to known issues with the method-
ology used to produce these estimates. In the case of the BLUE 
and ISBA-CTRIP land use fluxes, for example, the strong land use 
flux peak around 1960 and the corresponding errors (Figure 4c,d) 
coincide with changes in the datasets used as inputs before and 
after 1961. The DGVMs, BLUE, and part of the simulations un-
derlying OSCAR use the harmonized land use change data LUH2 
(Chini et al., 2021; Hurtt et al., 2020), which is based on the HYDE 
population and land use dataset (Goldewijk, Beusen, et al.,  2017; 
Goldewijk, Dekker, et al.,  2017). HYDE transforms the country-
level statistics on agricultural areas from the Forest and Agriculture 
Organization (FAO, FAOSTAT,  2021) into spatially explicit maps 
using ancillary data from satellite remote sensing and rules on how 
agricultural land is distributed at the sub-national level. Since the 
FAO estimates only begin in 1961, agricultural areas for earlier time 
periods are approximated by combining population estimates with 
per capita land use estimates that follow a curved trajectory based 
on the (limited) available historical sources. This switch in meth-
odology in 1961 is the likely cause of the high land use flux prior 
to the 1960s and the subsequent drop (Bastos et al.,  2021). The 
quickening growth in the land use flux between 1940 and 1960 may 
also be connected to a misrepresentation in the construction of 
these fluxes. There is evidence that LUH2, which underlies BLUE 
and DGVM-based estimates including ISBA-CTRIP, does not accu-
rately capture the increase in terrestrial CO2 uptake associated with 
land abandonment occurring in the former Soviet Union during the 
1940s (Bastos et al., 2016), causing flux estimates to be artificially 
high during this period.

F I G U R E  3  Panels (a-c) show the distributions of 10,000-member ensemble error (Equation 3) for runs using CONST, H&N, or BLUE as 
input for the land use flux over 1900–2019. Panel [d] shows the distributions of the percent differences in error from the 10,000-member 
ensembles using H&N or BLUE as input for the land use flux compared to the error when using CONST for each member of the ensemble. 
Ensemble errors are shown as the root mean squared error (RMSE). The interquartile range for the H&N distribution in panel (d) is 9.1% and 
for the BLUE distribution in panel (d) 18.3%. The dashed vertical line in panel [d] marks zero percent difference, and for all panels the solid 
vertical lines mark the mean (μ) of each distribution. We hereafter report and discuss results for the 1900–2019 fitting period by default 
unless otherwise specified.
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7332  |    DOHNER et al.

The upswing and corresponding errors in Figure  4 for ISBA-
CTRIP in recent decades are probably unrelated to a concurrent 
switch in accounting in the underlying dataset HYDE. The HYDE 
dataset switches from using only decadal to using annual data in 
2000, and the consequently higher interannual variability may have 
increased emissions due to the asymmetry of decay and regrowth 
(Friedlingstein et al., 2022) and may be a reason for the higher errors 
in the last decades. However, this switch in accounting applies also 
to BLUE, which relies on the HYDE dataset but does not show signs 
of greater error in recent decades, suggesting that the switch to an-
nual data may not be responsible for the upswing seen in DGVMs.

The errors in Figure 4 for ISBA-CTRIP since 2000 may instead 
be explained by biases in deforestation rates in the LUH2 dataset 
(Bastos et al.,  2020). These biases have been corrected in subse-
quent versions (Chini et al., 2021). Therefore, the ISBA-CTRIP esti-
mate we use (from Friedlingstein et al. (2020)) is still subject to these 
biases, but the BLUE estimate (from Friedlingstein et al.  (2022)) is 
not. The post-2000 increase in the ISBA-CTRIP land use flux esti-
mate may also be exacerbated by the inclusion of “loss of additional 

sink capacity” (discussed in Section 3.2.1), which reinforces increases 
in the land use flux and is not represented in bookkeeping-based 
estimates. Overall, these connections between the errors in land 
use flux estimates and their methodologies illustrate the process 
by which the atmospheric CO2 growth rate's constraint on decadal 
variability may be used to diagnose underlying issues in land use flux 
estimates.

3.2  |  Constraint on the mean land use flux

3.2.1  |  Additive parameter α

Information on model performance is also contained in the distribu-
tion of the parameter α. Figure 6 shows histograms of α across the 
full ensemble of land use models for both time periods. We find that 
the distributions span zero, with a mean value below zero for both 
time periods. We also find that α is strongly correlated with the time-
averaged land use flux estimates used for each fit, with an especially 
strong correlation for the full 1900–2019 period (Figure  6a and 
Table 2).

What significance is implied by the distributions of α centering 
below zero? To address this question, we start with the hypothesis 
that the ensemble of estimates of the different budget terms, in-
cluding the model-to-model variations in the published estimates 
of LU and B, reflect purely random variations around the unknown 
“true” historical evolution of each of those quantities. If this hypoth-
esis were true, then the distribution of α values associated with the 
20 LU model estimates would be expected to have a mean of zero. 
(This expectation is supported by additional runs using a hypothet-
ical atmospheric record produced via forward runs driven by the 
ensemble mean estimates for the budget terms. Method and results 
are detailed in SI.) In contrast, the mean of α across the 20 models 
(histograms in Figure 6) differs from zero by ~2 times the standard 
error on both timeframes (SE =  std(α)/sqrt(20-1) = 0.16 PgC year−1 
for 1900–2019 and SE  =  0.26 PgC year−1 for 1959–2019; distribu-
tions shown in Figure 6 histograms). We calculate the standard error 
using 19 degrees of freedom, conservatively treating the 20 differ-
ent land use cases as the only varying parameters between runs. 

F I G U R E  4  Comparison of averaged 
ensemble error (dark teal) for each land 
use flux ([a] CONST, [b] H&N, [c] BLUE, 
and [d] ISBA-CTRIP), shown with an error 
envelope (±1σ) in lighter teal. The land use 
flux (LU), which has been adjusted by the 
ensemble-averaged fitting parameter α, is 
shown both in the 10-year smoothed (dark 
grey) and unsmoothed (light grey) forms.

F I G U R E  5  Comparisons of terrestrial sink estimates, including 
sinks inferred as the residual of Equation (1) (Bres) assuming 
different estimates for LUj where Bres = FF + LUj − O − AGR, where 
LUj is either CONST or BLUE. Thin pink lines represent estimates 
of individual models of B per Friedlingstein et al. (2020). No 
adjustment is made to the means of the land use fluxes in this 
figure. All data have 10-year smoothing applied.
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    |  7333DOHNER et al.

Thus, we are able to falsify the hypothesis. Of course, one might 
argue that the hypothesis was anyway doubtful because the dif-
ferent models for LU and B share assumptions, methods and input 
datasets. Nevertheless, our ability to falsify the hypothesis using 
atmospheric data has broader implications, because it provides a 
means to identify a specific bias that was previously not recognized.

How should we interpret the strong correlation between α and 
the mean land use fluxes across the 20-model ensemble? We argue 

that this correlation suggests that α is best interpreted as a correc-
tion to the budget imbalance involving LU. This interpretation is sup-
ported by the following points: First, the range in α is larger than the 
uncertainties in AGR, FF, and O, so α cannot be significantly associ-
ated with errors in these terms. Second, a similarly strong correlation 
as that between α and the mean land use flux is not found between 
α and the mean land sink B over either the 1900–2019 or 1959–2019 
periods (correlations shown in Table  2; Figures  S6 and S7). Third, 

F I G U R E  6  Comparison of the ensemble-averaged best fit of additive parameter α (Equation 2) and the time average of the land use flux 
specified in the ensemble (LUj), fit and calculated over the 1900–2019 (panel [a]) and 1959–2019 (panel [b]) periods. Points are shown with 
±1 standard deviation of the value for α in each LUj ensemble. The time average of LUj (denoted as LUj  ) is calculated after applying 10-year 
smoothing. The teal lines and accompanying equations are a linear least-squares fit to the data, whereas the gold lines are fits to the data 
with slopes equal to unity (the gold line is obscured by the teal line in panel [a]). Also shown are histograms of the model-fitted values of α 
across the 20 × 10,000 ensemble runs for each fitting period (panel [a]: μ = −0.35 ± 0.70; panel [b]: μ = −0.48 ± 1.11). Zero is marked with a 
dashed line and the histogram means are marked with a solid line that extends into the scatter. The ensemble means of LUj  + α for each time 
period can be inferred from the projection onto the x-axis of the intersection point of the gold line (slope = 1, line of constant LUj  + α) and 
the zero line.

LUj Bk

1900–2019 1959–2019 1900–2019 1959–2019

α Correlation 
coefficient

−0.80 −0.60 0.46 0.12

p-value 2.5 × 10−5 0.0049 0.060 0.64

β Correlation 
coefficient

0.0071 0.11 −0.56 −0.62

p-value 0.98 0.63 0.021 0.0083

Note: For example, values of α found when using each of the 20 inputs for LU are compared to 
the means of the respective LU, with the fits performed over the 1900–2019 fitting timeframe 
and LUj  calculated over 1900–2019, in the case of the 1900–2019 column. p-values are calculated 
using the MATLAB corrcoef function. Model inputs LUj are assumed to be independent, as are Bk 
(discussed above). Scatterplots of these data are embedded in Figure 6 and displayed in isolation in 
SI (Figures S6 and S7).

TA B L E  2  Correlation coefficients and 
p-values of the relationship between (i) 
the means of fitting parameters α and 
β across ensemble runs specific to each 
model input and (ii) means of model inputs 
of the land use flux (LUj , where overbar 
denotes the time average) and terrestrial 
sink (Bk )

 13652486, 2022, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16396, W

iley O
nline L

ibrary on [25/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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interpreting α as a correction to B would significantly change the 
time evolution of B by reducing its relative growth since 1900 (dis-
cussed further below). However, adjusting LU by α does not have 
this effect, and the offset in α is similar in magnitude to differences 
in published mean values of LU.

We thus proceed with the assumption that LUj + α can be inter-
preted as an adjusted estimate of the land use flux mean LUj, and re-
port the adjusted flux both for (i) values of α estimated for individual 
land use cases and (ii) when averaging LUj + α across the 20-model 
ensemble. For each land use flux case LUj, we calculate α as the aver-
age value across the 10,000 model runs. The resulting LUj + α value 
for each land use flux case is lower than LUj in the majority of cases 
(Figure 6 and Table S1). Averaging LUj + α across land use flux cases 
yields values that are consistently lower than the average of the 20 
versions of LUj as well as the Friedlingstein et al.  (2022) estimate 
(Table  3), which is an average of the three bookkeeping estimates 
H&N, BLUE, and OSCAR. These adjusted land use flux estimates are 
robust to the details of averaging. An unweighted average of the ad-
justed land use flux across the 20-model ensemble (excluding CONST) 
yields 1.04 ± 0.57 PgC year−1 when optimizing over 1900–2019 and 
1.06 ± 1.04 PgC year−1 when optimizing over 1959–2019 (Table  3). 
Weighting inversely with model error (MSE) yields 1.06 ± 0.56 PgC 
year−1 and 0.98 ± 1.03 PgC year−1 when optimizing over 1900–2019 
and 1959–2019, respectively. The corresponding estimate for the 
CONST scenario (for which LUj = 0) yields 0.75 ± 0.43 PgC year−1 and 
0.74 ± 0.86 PgC year−1 for 1900–2019 and 1959–2019, respectively. 
For the 1900–2019 period, the spread in LUj + α is reduced below the 
designated LU uncertainty of 0.7 PgC year−1 quoted in Friedlingstein 
et al. (2022). The 1959–2019 period does not show a reduced spread 
in LUj + α because the adjustment incorporates uncertainty in the 
other terms of the budget, particularly fossil fuel emission, which is a 
large source of uncertainty in recent years.

What aspects of the record yield this emergent constraint on the 
mean land use flux? To address this point, we consider the simplest 

case of a constant land use flux, which essentially contains the same 
constraint. The atmospheric budget tightly constrains the time his-
tory of the residual net land flux, Bnet = FF − AGR − O. With this con-
straint, the relative growth in the terrestrial sink, calculated as the 
residual of the budget (Bres), is strongly dependent on the constant 
value assumed for LU. A high value for LU yields much lower relative 
growth in Bres than a low LU mean (Figure 7). A constraint on the rel-
ative growth in B, combined with the assumption that LU is relatively 
constant, is therefore sufficient to constrain LU.

Our ability to constrain the constant α and to interpret this as 
an adjustment to the mean land use flux is therefore strongly con-
ditioned upon the published estimates of LU and B having distinct 
temporal patterns, with LU remaining relatively constant over the 
evaluation periods, and B growing strongly. This aspect of the pub-
lished estimates is clearly rooted in mechanistic understanding. 
The land use flux is driven by competing influences that reduce 
its long-term trend. Although the global population grew fourfold 
from 1900 to 2019, the relative influence of population on land use 
is largely offset by changes in technology (Goldewijk, 2001; Meyer 
& Turner, 1992), such as the advent of industrialized agriculture in 
the post-war era (Pongratz et al., 2008). Hong et al. (2021) showed 
that after 1960 substantial growth in population and agricultural 
production per capita was largely balanced by decreases in land re-
quired per unit of agricultural production associated with agricul-
tural intensification. And although rates of tropical deforestation 
have increased since 1900, their resulting CO2 emissions have been 
largely offset by fire suppression and declining deforestation else-
where along with the resulting drawdown of CO2 from regrowth in 
abandoned deforested and agricultural areas (Houghton et al., 2012).

In contrast, the known drivers of the terrestrial sink have all ac-
celerated since 1900. Gross primary production, water use efficiency 
of plants, and biomass production have, all with high confidence, 

TA B L E  3  Average values of LUj  + α, where α is the ensemble-
averaged best fit additive parameter and LUj  is the mean across all 
20 land use flux cases

LUj  + α

1900–2019 1959–2019

All LU cases, unweighted 1.04 ± 0.57 1.06 ± 1.04

All LU cases, weighted by 1/
MSE

1.06 ± 0.56 0.98 ± 1.03

CONST 0.75 ± 0.43 0.74 ± 0.86

Average of 20 LU cases used in 
this study (Figure 1)

1.39 ± 0.7 1.54 ± 0.7

Friedlingstein et al. (2022) 1.32 ± 0.7 1.30 ± 0.7

Note: The averages comprise individual ensemble fits of LUj  + α for each 
land use case in the grouping (e.g., 20 LU cases × 10,000 runs = 200,000 
ensemble runs for “All LU cases”). “All LU cases” does not include the 
ensemble runs for the hypothetical constant land use case CONST. 
Average values of LUj  + α are compared to published estimates (bottom 
two rows). All data are in PgC year−1.

F I G U R E  7  The residual terrestrial sink (shaded grey) given 
two land use flux scenarios with different 1900–2019 means. 
The residual sink is calculated as the difference between LU (blue 
line, 1.75 PgC year−1 in panel [a] and 1 PgC year−1 in panel [b]) 
and the budget-constrained sign-reversed residual net land flux 
Bnet = FF − AGR − O (green curve). The mean 1900–1910 net land 
flux is marked with a dashed grey line to highlight the relative 
growth in Bres between 1900 and 2019.
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    |  7335DOHNER et al.

increased (Walker et al., 2020). Nitrogen deposition is also shown 
to have increased since 1900 (Ackerman et al.,  2019; Galloway & 
Cowling,  2002), which has enhanced global net primary produc-
tion (Magnani et al.,  2007; Reay et al.,  2008). Furthermore, fertil-
ization of the terrestrial biosphere by increasing atmospheric CO2 
concentrations has been repeatedly shown to be a primary driver 
of the terrestrial CO2 sink (Ciais et al., 2013; Huntzinger et al., 2017; 
Piao et al., 2013; Sitch et al., 2008; Walker et al., 2020). While the 
sensitivities of the terrestrial CO2 sink to these processes remain 
uncertain, these processes have all clearly increased since 1900, 
supporting strong growth in the terrestrial CO2 sink.

We are aware of at least one driver of LU that may have grown 
similarly to B, that is, the “loss of additional sink capacity” (Pongratz 
et al., 2014). This flux, which is included in DGVMs but not bookkeep-
ing estimates of the land use flux, represents the lost capacity in the 
terrestrial sink due to land use and has similar drivers to the terres-
trial sink. In our model, such a flux would be attributed to a decline in 
the strength of the terrestrial sink β·Bk (discussed in Section 3.2.2). 
Although we would expect such a decline to be reflected in our 
model's terrestrial sink, we do not see an obvious difference in β·Bk 
between models that do (DGVMs) and do not (bookkeeping) include 
lost sink capacity in the land use flux (Table S1). There is currently no 
consensus on how to incorporate the loss of additional sink capacity 
into land use models and this flux is sensitive to the details of the 
modeling approach (Pongratz et al., 2014).

An important question is whether the atmospheric budget 
can resolve changes in the land use flux on a broader range of 
timescales than explored here. Answering this remains difficult 
because of ambiguity in how to assign model error; while the re-
sidual errors in Figure 4 might be due to the land use flux, they 
might also be due to errors in other terms. In line with this rea-
soning, our model cannot be inverted to produce an optimized 
land use flux to a decadal precision better than the RMSE of the 
CONST land use flux case (±0.5 PgC year−1); we take the RMSE 
of CONST as an optimistic (lower bound) estimate of decadal 
model error. Possible decadal changes in the land use flux high-
lighted in other studies, for example, wartime impacts on land 
use (Bastos et al., 2018) and interannual changes in deforestation 
rates (Hansen et al., 2013; Houghton et al., 2012), are therefore 
not challenged by our results.

3.2.2  |  Implications for the terrestrial sink

Although we mainly focus on implications for the land use flux, our 
method also yields insights on the magnitude of the terrestrial sink, 
B. We interpret β as a corrective scaling factor on the terrestrial sink 
pick Bk. Across the 20-LU model grouped ensemble fit over 1959–
2019, the average value of β·Bk  is 1.99 ± 1.05 PgC year−1 over the 
same period, which is ~15% smaller than the multi-model mean ter-
restrial sink reported in Friedlingstein et al. (2020) of 2.35 ± 0.60 PgC 
year−1 over the same time period (Table S2). We note, however, that 
the bias suggested by β is not as strong as that suggested by α. If B 

were unbiased, β would bracket unity. Our model finds values for β of 
0.93 ± 0.39 for 1900–2019 and 0.89 ± 0.50 for 1959–2019, which are 
closer to unity within the standard error (DOF = 19).

3.2.3  |  Implications for climate sensitivity

The mean land use flux since 1900 is relevant to metrics of climate 
sensitivity that hinge on the ratio of observed warming to cumu-
lative emissions, such as the transient climate response to cumu-
lative emissions (TCRE) (Millar & Friedlingstein,  2018). Millar and 
Friedlingstein use a combination of results by Houghton et al. (2012) 
and Van Der Werf et al. (2010) as reported by Le Quéré et al. (2016), 
including a land use flux with a 1900–2016 mean of 1.1 PgC year−1 
to estimate the TCRE. If we assume the true land use flux is relatively 
constant and has a 1900–2019 mean of 1.04 PgC year−1, then the cu-
mulative anthropogenic CO2 emissions (FF + LU) 2016 and prior are 
reduced by ~4%, corresponding to a 4% increase in the TCRE, imply-
ing that future increases in global temperature are underpredicted.

3.2.4  |  Implications for airborne fraction

The adjusted land use flux is also relevant to estimating trends in the 
airborne fraction (AF) of CO2, defined as the annual increment in 
atmospheric CO2 divided by the sum of fossil and land use emissions 
(

AF =
AGR

FF+ LU

)

. Canadell et al.  (2007) used a land use flux updated 

from Houghton (2003) with a 1959–2006 mean of 1.15 PgC year−1 to 
suggest that the AF increased by 2.5% per decade over the same 
period. However, calculating the AF trend across each LUj  + α in the 
20-model grouping (fit over 1959–2019, with AF trend fit separately 
for every instance of LU, α and inputs [n = 200,000]) yields an aver-
age trend of −0.03 ± 1.52% per decade over 1959–2019. A dimin-
ished trend was supported by Knorr  (2009), who noted the AFs 
sensitivity to the land use flux and estimated the trend at 0.7 ± 1.4% 
per decade after accounting for uncertainties in the global carbon 
budget, as well as by van Marle et al. (2022), who use visibility data 
in forest regions to estimate a new land use flux estimate and report 
a decrease in AF of 0.014 ± 0.010 decade−1 since 1959.

4  |  SUMMARY

We show that the observed atmospheric CO2 growth rate can place 
meaningful constraints on both the decadal variability and mean of the 
land use CO2 flux since 1900 when accounting for variations in the 
major sources and sinks of CO2 to the atmosphere. We use estimates 
of the atmospheric CO2 growth rate, fossil fuel emissions, ocean sink 
and natural terrestrial sink in a regression in which we alternately use 
20 different estimates of the land use flux. We compare the magnitude 
and timing of the regression errors when using each land use flux input, 
as well as examine the significance of the regression fitting parameters.
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We find that the observed atmospheric CO2 growth rate 
since 1900 is better simulated using land use flux estimates 
with less decadal variability, and the error in simulating the AGR 
increases roughly in proportion to the amount of decadal vari-
ability in the land use flux. The land use flux estimates have co-
incident features of variability and error between mid-century 
that may be the result of issues in the underlying datasets. Most 
DGVM-based land use flux estimates include large errors after 
2000, which also point to potential errors in the inputs common 
to these estimates. We find that a scenario that assumes the land 
use flux is constant after 1900 matches the atmospheric CO2 
growth rate better than any previously published estimate, even 
after allowing a constant additive adjustment to the published 
estimates.

Our model resolves a budget adjustment that is on average nega-
tive and which we interpret as a correction to the mean of published 
land use fluxes, one of the least well-known components of the 
global carbon budget. This interpretation is based on the additive 
correction being strongly correlated with the average land use flux 
over the last century from different LU estimates but not with the 
terrestrial sink or other terms in the carbon budget. If we alternately 
interpret the additive constant as a correction to the terrestrial sink, 
this greatly reduces the relative growth of the sink since 1900, which 
is inconsistent with the relative growth of published estimates, as 
rooted in mechanistic understanding.

Interpreting the additive constant as a correction to the mean 
land use flux yields an atmospherically adjusted mean land use flux 
of 1.04 ± 0.57 PgC year−1 over 1900–2019 and 1.06 ± 1.04 PgC 
year−1 over 1959–2019. These adjusted values are at the low end 
of the distribution of published estimates. The downward ad-
justment to the mean land use flux requires a ~15% reduction in 
the strength of the natural terrestrial sink over 1959–2019 com-
pared to the multi-model mean published by GCP (Friedlingstein 
et al., 2020). In all, we find that the atmospheric CO2 budget fa-
vors land use flux estimates with less decadal variability and may 
resolve an overall downward adjustment to the mean land use flux 
since 1900.
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