Estimating the uncertainty of the Mann et al. (1998, 1999) reconstructions
Introduction
Here I only consider the reconstruction of full Northern Hemisphere (NH) annual-mean temperature, as published by Mann et al. (1998, 1999) back to 1000.  Mann et al. have already published uncertainty (or error) ranges, which are time dependent (i.e., they widen or narrow as the set of proxy records with data values changes through time).  These are based on the calibration residuals, fitting two white noise levels to their spectra to the frequency bands ( = 0 to 0.02 and ( = 0.02 to 0.5 and then integrating each to obtain the variance of the calibration residuals in the “low” and “high” frequency bands.  These variances are then summed and square-rooted to obtain the one standard error uncertainty range.

I have two requirements that are not met by these published uncertainties.  First, I would like to know how they vary with time scale – after all, if the uncertainty is (at least partly) a random error then the error of, say, a 10-year mean will be less than the error of individual yearly reconstructed values.  Second, I would like to be able to model the residuals, including their spectral structure, for situations where the standard error is insufficient (e.g., estimating trends).  Mike kindly sent me the calibration residuals for the 1000, 1400 and 1600 networks, and I already had them for the full 1820 network.  I have used these to investigate the time-dependent and timescale-dependent nature of that part of the reconstruction errors that are expressed by the calibration residuals.

Annual errors from the calibration residuals
First I simply compared the standard deviation of the residuals (79 values, from 1902–1980) with the standard errors provided by Mike previously (estimated as described above).

	Network
	Mann et al. SE (K)
	Residuals ( (K)

	1000
	0.240
	0.232

	1400
	0.244
	0.225

	1450
	0.246
	?

	1500
	0.244
	?

	1600
	0.133
	0.194

	1650
	0.122
	?

	1700
	0.124
	?

	1750
	0.129
	?

	1760
	0.122
	?

	1780
	0.116
	?

	1820
	0.113
	0.097


The values match reasonable well for the 1000, 1400 and 1820 networks (though I’m not sure why they do not match perfectly?).  But there is an important disagreement for the 1600 network, with the published errors much smaller than the calibration residuals imply.  Mike: do you have any explanation for this difference?
Variance inflation factors
If the calibration residuals are random errors, then this aspect of the reconstruction uncertainty will reduce with time scale.  The variance of a time-mean of length m will be:
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so that the standard deviation reduces with (m but increases with V, the “variance inflation factor”.  V takes into account the autocorrelation structure of the calibration residuals.  If all residuals are independent of other residuals then V = 1.  If this is not the case, then there are various formulae commonly used according the how large m is and according to how the autocorrelation structure is modelled (e.g., with an autoregressive model).  These can all be derived from the most general formula that I am aware of:
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where rk is the autocorrelation at lag k.  An alternative formula uses the spectral density of the calibration residuals at ( = 0, but is less general because it is only for large m:
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von Storch and Zwiers discuss three methods of estimating V.  Using the estimated autocorrelation function (ACF) directly in (2) performs very poorly, probably because the ACF is poorly known when the data sample is small (as it is here).  Fitting an autoregressive model of order p to the ACF, and then using (2) with the theoretical ACF of the AR(p) model [or equivalently using the AR(p) version of equation (2)] performs better.  Estimating the spectral density near to ( = 0 and then using (3) was considered to be best for “moderate” to “small” samples.  I chose the second of these methods, however, because the spectral method does not provide an easy way of modelling the residuals and it also relies on the spectral density estimate near to ( = 0 being the same as the spectral density at ( = 0 (i.e., that it is in the white noise part of the spectrum, which may not be true given the small sample used here).
Autocorrelation structure of the calibration residuals
Figure 1 shows the calibration residuals for the four networks considered, plus the ACF of each.  Networks 1600 and 1820 are easiest to deal with, since they have no statistically significant autocorrelations.  Even though they are not significant, the sample lag-1 autocorrelations are still a better estimate of the population r1 than is zero.  In fact, I use the data from subsequent lags to obtain the “best-fit” AR(1) model to the ACF (virtually the same as the sample r1).
For the 1000 and 1400 networks, however, there are some (at least) significant correlations in the ACF.  The Akaike Information Criterion suggests that an AR(2) model is most appropriate for both cases.  The plots show AR(1) and AR(2) fits to the ACF, either estimated from just r1 or r1 and r2 (respectively), or as best fits to the whole ACF.  Neither adequately captures the positive correlations at the longer lags.  Also the theoretical spectra of the AR(2) models have unwanted structure, with a broad minimum in power between about 10 and 2.5 years.
The green lines in Figure 1 show linear fits to the ACFs, which capture the characteristics of the ACF quite well.  For the 1000 and 1400 networks, these linear fits from lag-1 to lag-16 are padded with zero correlations out to lag-40 and then an AR(40) model is fit to them.  The autoregressive coefficients look “well-behaved” (i.e., changing smoothly with order) and the theoretical spectra of the AR(40) model is also well-behaved, being essentially white noise at time scales shorter than 20 years, and then very red at longer time scales.  The peak at ( = 0 matches that given be Mann et al. (1999) in their Figure 2 for the 1000 network.
For the 1000 and 1400 networks, the AR(40) model fit to this linear fit to the ACF is used to represent the autocorrelation structure of the calibration residuals.  Note that this is very different to fitting an AR(40) model directly to the ACF (out to lag-40) which would have 40 degrees of freedom and end up with a falsely good fit to the data.  Here there are only two degrees of freedom – the intercept and slope of the linear fit to the ACF.
Standard errors at different time scales
The autoregressive models [AR(40) fit to linear ACF for 1000 and 1400, AR(1) fit to ACF for 1600 and 1820] are used with equation (2) to estimate the variance inflation factor for various time scales, and then applied in equation (1) to estimate standard errors at these time scales.
	
	Variance inflation factor of each network and time scale

	Timescale m (years)
	1000
	1400
	1600
	1820

	1
	1.00
	1.00
	1.00
	1.00

	10
	2.47
	3.10
	1.44
	1.11

	30
	3.58
	4.80
	1.44
	1.11

	50
	3.82
	5.17
	1.44
	1.11

	100
	4.00
	5.45
	1.44
	1.11


	
	Standard error of each network and time scale (K)

	Timescale m (years)
	1000
	1400
	1600
	1820

	1
	0.232
	0.225
	0.194
	0.097

	10
	0.115
	0.125
	0.074
	0.032

	30
	0.080
	0.090
	0.043
	0.019

	50
	0.064
	0.072
	0.033
	0.015

	100
	0.046
	0.052
	0.023
	0.010


The standard errors are plotted in Figure 2 for the different time scales and it is assumed that the 1000 errors are appropriate for 1000–1399, the 1400 errors for 1400–1599, the 1600 errors for 1600–1819, and the 1820 errors for 1820–1980.  The third are these assumptions is likely to be wrong, since there were big increases in the proxy network at intermediate stages between 1600 and 1819.  Nevertheless it allows me to provide an uncertainty estimate for the whole reconstruction period, and for comparison with the Mann et al. errors (shown in black in Figure 2).  The annual errors are similar to Mann et al. except for the 1600 network, as already noted above.  The errors reduce with time scale (though note the slower reduction for the 1400 network due to the higher ACF).
These errors can now be plotted both sides of the reconstruction, with the reconstruction filtered with various length filters and using the errors appropriate to that time scale.  Figure 3 shows both (1 and (2 standard errors.  The reduction with increasing time scale is very clear, and the errors become tiny for 100-year smoothing.
Discussion
While it is important to reduce the errors in an appropriate way with increasing time scale (i.e., filtering or smoothing), I’m not convinced that the errors estimated here are correct.  They seem to reduce too much with time scale, on the basis that they become lower than the instrumental record standard errors (Jones et al., 1997, estimated the NH decadal mean to have a standard error of between 0.093 and 0.054 K depending on instrumental data coverage).  Perhaps the reason is that the calibration residuals capture only one part of the reconstruction error – the other part comes from the uncertainty in the multivariate model parameters, which is (I guess) hard to quantify in this case.  These other errors do not typically reduce with increasing time scale, and because they are combined in quadrature (i.e., as variances) they can reduce the time scale sensitivity of the total uncertainty range.

Some questions:

(1) From what I can tell from the various Mann et al. papers that show these results, you use the same uncertainty range (i.e., the annual error) even when showing/comparing smoothed reconstruction results.  Is this true, and what is the reason for this?

(2) Perhaps it is because it is not possible to quantify the parameter uncertainty, and hence by not reducing their errors with time scale they are being conservative about this?  That may be reasonable, though they would be compensating for one bias by introducing another.

(3) Perhaps there is a mistake in my method, or a better alternative method?
(4) Perhaps the errors computed here are indeed a correct reflection of the reconstruction uncertainty?
Any comments or feedback would be gratefully received!
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Figure 1: calibration residuals from 4 proxy networks, plus ACF and various fits to the ACF.
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Figure 2: estimated reconstruction errors.  Black from Mann et al. (1999).  Purple from standard deviation of calibration residuals.  Others from standard deviation of calibration residuals reduced according to equations (1) and (2) for averaging periods 10 (pink), 30 (red), 50 (orange) and 100 (green) years.
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Figure 3: reconstructions with various filters applied, plus the estimate errors appropriate for each filter, 1 year (i.e. no filter), 10 year, 30 year, 50 year and 100 year smoothing.
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