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Using incorrect far-wing lineshapes in computer models can lead to overestimates of the radiative
forcing from additional atmospheric CO2 by several tens of per cent. Most of the uncertainty
could be eliminated by using modern instrumentation, with high spectral resolution, to determine
lineshapes that fit observations at the high-frequency edge of the 667 cm−1 band of CO2.

PACS numbers: 33.20.Ea, 33.70.JG, 34.50.Ez, 92.70.Cp

As documented by Fyfe et al.[1], the observed warming
of the earth’s surface over the past two decades has been
much less than predicted by models. The discrepancy
is so large, several hundred percent, that it is probably
not due to any single flaw in the models but to a num-
ber of factors. Here we discuss a factor not mentioned
by Fyfe et al.[1]: the feeedback-free, radiative forcing
from increasing CO2 may be several tens of percent too
large in some models. This is because the individual
CO2 absorption lines are not Voigt profiles (Doppler-
broadened Lorentzians) but have their far wings sup-
pressed by pedestals.

For a molecule with negligible Doppler shift, making
a transition from an upper level u to a lower level l, the
fraction of radiated energy in the spatial-frequency in-
terval from ν to ν + dν is Gul(ν)dν, where the lineshape
function,

Gul(ν) ≈

(

µul

πν4ul

)

ν4χul(ν)

µ2
ul + (ν − νul)2

, (1)

is the product of a Lorentzian line core and a multiplica-
tive pedestal function χul(ν), which determines the far-
wing frequencies, generated during the few-picosecond
durations of collisions. The Bohr frequency is νul =
(Eu −El)/(hc), where Eu and El are the energies of the
upper and lower levels, h is Planck’s constant and c is the
speed of light. Core linewidth parameters are measured
to be µul ≈ 0.1 p cm−1 atm−1, where p is the air pres-
sure [2]. In the upper stratosphere, where µul ≤ 10−4

cm−1 and comparable to the Doppler broadening, the
Lorentzian line core of (1), must be replaced by a Voigt
profile, as discussed in the book by Hartmann, Boulet
and Robert [3] where one can also find a thorough dis-
cussion far-wing lineshapes. Lorentz or Voigt line profiles
have χul = 1 and correspond to instantaneous collisions.

There have been credible attempts to determine far-
wing lineshapes from first-principles calculations, for ex-
ample, those of Ma et al.[4]. However, the collisional in-
teractions required for these calculations are not known
with much accuracy, and the far-wing lineshapes re-
ally need to be determined experimentally, just as line-
strengths, core line-broadening coefficients and other pa-
rameters for radiation-transfer calculations have been [2].

To quantify further discussions, we will use the place-
holder pedestal

χul(ν) = sech2([ν − νul]/∆νc), (2)

where ∆νc is the width. Measurements on bands of CO2,
for example by Edwards and Strow [5], suggest that the
far wings decrease approximately exponentially with de-
tuning, |ν−νul|, as do the wings of the pedestal (2). But
experiments may show that one can choose better model
pedestals.
Fig. 1 shows modelled increments ∆Z in down-

welling, spectrally-integrated brightness from the cloud-
free zenith for doubling CO2 concentrations C from the
present value C0 = 400 ppm. The downwelling “sensi-
tivity,” d∆Z/d log2 C is about 40% larger for pure Voigt
lineshapes than for lines with the pedestal (2) and a phys-
ically plausible width of ∆νc = 2 cm−1. Also shown is
the Arrhenius logarithmic approximation [6].

∆Z = Z2 log2(C/C0). (3)

We have been unable to find any previous discussion
of the significant overestimate of radiation transport that
comes from using Voigt profiles without pedestals, nor
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FIG. 1. (Color online) Line-by-line (points) calculation
from (24) of clear-sky downwelling increments, ∆Z, versus
ln(C/C0) for C0 = 400 ppm of CO2. The Arrhenius approxi-
mations (lines) of (3), have the parameters (in W m−2 sr−1):
Z2 = 3.15 for Voigt profiles Z2 = 2.25 for lines with pedestals.



have we been able to determine what assumptions about
far-wing lineshapes were used in the models discussed by
Fyfe et al. [1]. Comparable or larger effects should occur
for the radiation transport at the tropopause [7], where
“radiative forcing” of global warming is commonly calcu-
lated. Harde, in a private communication, confirms that
his recent model [8], one of the few that predicts warm-
ing comparable to observations, used Voigt profiles with-
out pedestals. Experiments summarized in Fig. VII.15
of reference [3], show that models with Voigt lineshapes
predict far more thermal emission at the edges of the 667
cm−1 CO2 band than is actually observed.
We hope this introduction makes clear that it is impor-

tant to eliminate uncertainties due to far-wing lineshapes.
Next we outline the physics of pedestals, and we conclude
by suggesting experiments to characterize CO2 pedestals
accurately enough to eliminate this source of uncertainty
in climate models. In cloud-free air, radiation transport
is governed by the Schwarzschild equation [9]

cos θ
∂I

∂z
= κ(B − I). (4)

Here I = I(ν, z, θ) is the brightness of a pencil of radia-
tion of spatial frequency ν (in cycles/cm or cm−1) at the
altitude z. The pencil makes an angle θ to the vertical.
The local thermal emission of the atmospheric molecules
is proportional to the product of the attenuation coeffi-
cient κ = κ(ν, z) and the local Planck brightness

B =
2hc2ν3

ex − 1
, (5)

The ratio of the photon energy to the thermal energy is
x = hcν/kBT ; kB is Boltzmann’s constant and T = T (z)
is the temperature of the atmosphere. The contribution
of CO2 molecules to the attenuation coefficient κ is

κ = CN
∑

ul

σul. (6)

where N = N(z) is the molecular number density of dry
air. We assume that the CO2 molecules are uniformly
mixed so C is independent of altitude. The contribution
of the transition l → u to the absorption cross section is

σul = SulGul. (7)

The frequency-independent line strength is

Sul = πreflu
(

1− e−xul

)

ηulWl/Q. (8)

The isotopomer fractions are ηul = 0.9843 for
16O12C16O, ηul = 0.0110 for 16O13C16O, etc.. The clas-
sical electron radius is re = 2.82× 10−13 cm, the oscilla-
tor strength of the absorption line is flu, the unnormal-
ized probability to find the isotopomer in the lower state
is Wl = e−El/kBT gl(2jl + 1), where jl is the rotational

FIG. 2. (Color online) Snapshot (with exaggerated param-
eters) of red-shifted electric fields E of radiation emitted in
a direction antiparallel to the velocity of an oscillating CO2

molecule, or blue-shifted radiation emitted parallel to the ve-
locity. The molecule is collisionally excited and radiates freely
until deexcited by a second collision. The green circles are the
loci of peaks of E. Doppler shifts, radiative damping and the
finite time of free oscillation produce the Voigt-profile core of
the resonant line. Radiation during collisional excitation and
de-excitation produces the pedestal.

quantum number of the lower level, and the coefficient gl
(often 1 or 0) depends on whether two oxygen isotopes
are identical. The partition function is Q =

∑

l Wl. The
ratio of the resonant photon energy to the thermal energy
is xul = hcνul/kBT , and the factor e−xul in (8) accounts
for stimulated emission on the transition u → l. Numer-
ical values for Suv for many thousands of transitions of
CO2 and other molecules have been measured and tabu-
lated [2].

The lineshape function Gul(ν) of (7) is proportional to
the spectral power density of the molecular radiation, or

Gul(ν) ∝ |Ẽ(ω)|2 ∝ ω4|D̃(ω)|2, (9)

with the normalization condition
∫

Guldν = 1. The
spatial frequency ν and radian frequency ω are related
by ω = 2πcν. The Fourier transform of the observed
electric-field is Ẽ(ω) =

∫

dtE(t)eiωt, and the Fourier
transform of the molecular dipole moment D(t) that
launched the field is D̃(ω) =

∫

dtD(t)eiωt. Fig. 2 shows
the electric fields radiated by a CO2 molecule that is col-
lisionally excited at time t = 0 and deexcited by a second
collision at time t = τ . From inspection of Fig. 2 and
(9) we see that the lineshape functions of (1) have much
the same physics as atomic-clock lineshapes [10], where
Cs atoms from an atomic beam are excited by an oscil-
latory magnetic field of a first Rabi loop, analogous to
the excitation collision of Fig. 2. After a period of free
oscillation in flight, they are deexcited by a second Rabi
loop, analogous to the deexcitation collision of Fig. 2.

The dipole moment associated with the transition from



u to l evolves as

D̈ = −ω2
ulD +

γul
ω2
ul

...
D + ω2

ulα̃0F. (10)

Most of (10) comes from a solution of Schroedinger’s
equation for a molecule driven by a real, classical elec-
tric field F , for example, the quadrupole field a collid-
ing N2 molecule. The term proportional to

...
D is the

Abraham-Lorentz radiation damping [11], and γul is the
spontaneous decay rate from u to l. The Bohr fre-
quency is ωul = 2πcνul ≈ 1014 s−1 The contribution
of virtual transitions l → u to the static polarizability is
α̃0 = c2Sul/(πω

2
ul). Taking the Fourier transform of both

sides of (10) we find

D̃ = α̃F̃ . (11)

where the polarizability at frequency ω is

α̃ =
ω2
ulα̃0

ω2
ul − ω2 − iγulω3/ω2

ul

. (12)

Transforming (11) to the time domain we find

D(t) =

∫

dτ α(τ)F (t − τ). (13)

For τ < 0, we set α(τ) = 0, thereby neglecting a tiny,
non-causal contribution from the pole of α̃(ω) at ω0 ≈
iω2

ul/γul. For τ ≥ 0 the response function is very nearly

α(τ) =

∫

dω α̃(ω)e−iωτ

2π
= ωulα̃0e

−γulτ/2 sinωulτ. (14)

Consider an impulsive field

Fk = F̂k + F̂ ∗

k with F̂k = A(t− tk)e
iφk−iωct. (15)

The envelope A(t− tk) is negligibly small if |t− tk| ≥ τc,
where τc ≈ 10−12 s is a characteristic impulse duration,
and φk is an arbitrary complex number. The character-
istic frequency of the pulse, ωc ≈ ωul, can be thought
of as the near-resonant vibration-rotation frequency of a
colliding molecule, for example N2 or O2, that exchanges
energy with the CO2 molecule. According to (13) and
(14), for times t > tk + τc, the dipole moment induced
by Fk is Dk = D̂k + D̂∗

k where

D̂k ∼
iωulα̃0Ã(ω+ − ωc)

2
eiφk+i(ω+−ωc)tk−iω+t. (16)

Here ω+ = ωul − iγul/2, and Ã(ω) =
∫

dtA(t)eiωt. Ac-
cording to (16), the molecule will “ring” at the Bohr fre-
quency ωul for a time of order γ−1

ul ≈ 1 s [12] after the
end of the impulse.
Let the molecule be excited by an initial collision at

time t1 = 0 and oscillate freely until it loses its oscilla-
tion energy in a second collision at the time t2 = τ , as

sketched in Fig. 2. This can be described by the bipulse
field Fτ = F̂τ + F̂ ∗

τ , where

F̂τ = A(t)e−iωct −A(t− τ)ei(ωc−ω+)τ−iωct. (17)

One can use (16) to verify that the ringing of the second
pulse of (17) cancels that of the first. For ω > 0, the
Fourier transform of (17) is

F̃τ (ω) = Ã(ω − ωc)
[

1− ei(ω−ω+)τ
]

. (18)

Substituting (18) into (11) and using the one-pole ap-
proximation to the polarizability, α̃ ≈ ωulα̃0/[2(ω+−ω)],
for frequencies ω ≈ ωul we find

D̃τ (ω) ∝ Ã(ω − ωc)
1− e−i(ω+−ω)τ

ω+ − ω
. (19)

In the atmosphere, the probability to find the value of τ
between τ and τ + dτ is e−ΓulτΓuldτ , where 1/Γul is the
mean time of free oscillation between collisions . Aver-
aging (9) over this distribution gives

Gul(ν) ∝ ω4

∫

∞

0

dτ Γule
−Γulτ |D̃τ (ω)|

2. (20)

Evaluating the integral (20) with (19) and normalizing
so that

∫

Guldν = 1, we find (1), where the pedestal
function is

χul(ν) =
|Ã(ω − ωc)|

2

|Ã(ωul − ωc)|2
. (21)

The half-width at half maximum, µul, of the Lorentzian
line core of (1) is

µul =
Γul + γul/2

2πc
. (22)

The placeholder pedestal (2) would be produced by the
envelope A(t) = A0 sech(t/τc), with collision duration
τc = 1/(π2c∆νc) and a resonant frequency ωc = ωul.
The minimalist theoretical discussion above can be

generalized to sequences of collisions that do not com-
pletely destroy the oscillating dipole but introduce am-
plitude or phase shifts and transfer excitation between
different Bohr frequencies (line mixing). For the rela-
tively hard collisions that interrupt the free oscillations
of CO2 molecules, the basic form (1) of the lineshape
function remains: a Lorentzian/Voigt core multiplied by
a pedestal that represents molecular radiation emitted
during finite-duration collisions.
We conclude with a brief discussion of experimental

determinations of far-wing line shapes. Modern instru-
mentation [13] could greatly improve on Langley’s pio-
neering experiments [14] on the attenuation of infrared
moonlight, used by Arrhenius [15] in the first attempts
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FIG. 3. (Color online) Cross sections σul of (7) in the high-
frequency wing of the 667 cm−1 absorption band of CO2. The
solid lines have pedestals (2), with a width of ∆νc = 2 cm−1,
corresponding to an envelope with a duration τc = 1.69 ps.
The dashed lines are from Voigt profiles without pedestals.
The resonance lines come from P and R transitions out of
excited vibrational states of the most abundant isotopomer,
16O12C16O, except for the rightmost line at νul = 749.951
cm−1, an R line for absorption from the first excited vibra-
tional state of the isotopomer, 16O13C16O. The temperatures
in K at the sample altitudes 0, 11 and 47 km are 296, 224.5
and 278.5. The pressures in Torr are 760, 178 and 1.

to estimate warming from additional CO2 in the atmo-
sphere. A particularly useful spectral region is the high-
frequency edge of the 667 cm−1 band, where there there
is little interference from lines of water vapor. CO2 ab-
sorption cross sections (7) in the representative interval
749− 750 cm−1 are shown in Fig. 3. For a ground-based
instrument recording the apparent brightness of the cen-
ter of the full moon at the zenith, the solution of (4) with
θ = π is

I(ν, 0, π) =

∫

∞

0

B(z)e−ρ(z)κdz + ǫmBm e−ρ(∞), (23)

where Bm is the brightness of the moon at a represen-
tative temperature of Tm = 380 K and a representative
thermal emissivity of ǫm = 0.9. The optical depth from
the surface to altitude z is ρ(z) =

∫ z

0
κ(ν, z′)dz′. Shown

in Fig. 1 are increases, ∆Z, of the clear-sky, zenith down-
welling, Z, integrated over the entire 667 cm−1 frequency
band

Z =

∫

∞

0

I(ν, 0, π)dν, (24)

due to increases of CO2 concentrations C above the
present level of C0 = 400 ppm.
Representative downwelling spectra (23) from the

moon and the atmosphere or from the atmosphere alone
with Bm = 0 are shown in Fig. 4. Near the strong
resonance at 749.842 cm−1 the downwelling is close the
Planck brightness (5) at the earth’s surface temperature.
There most of the downwelling comes from the first few
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FIG. 4. (Color online) Zenith downwelling, I(ν, 0, π), from
(23) for the conditions of Fig. 3. The solid lines come from
profiles with pedestals (2) of width ∆νc = 2 cm−1 . The
dashed lines come from Voigt profiles without pedestals.

hundred meters of the atmosphere, which is only slightly
cooler than the surface. The small, extremely narrow
resonances are from molecules in the upper stratosphere,
where linewidths are close to the Doppler limit of about
0.0006 cm−1 ≈ 20 MHz.
As one can see from Fig. 4, far wings have the largest

effect for frequencies in the gaps between unsaturated
CO2 lines near the band edges. Because the surface
downwelling (or the analogous radiative forcing at the
tropopause) involve emission and absorption over a large
range of temperatures and pressures, measurements with
high spectral resolution in the open atmosphere, at vari-
ous zenith angles, and comparison of these measurements
with model predictions like that of Fig. 4 would allow one
to experimentally determine far-wing broadening param-
eters (pedestal functions) for accurate modelling of radi-
ation transfer.
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